Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
A First Course on Symmetry, Special Relativity and Quantum Mechanics
The Foundations of Physics
Taschenbuch von Gabor Kunstatter (u. a.)
Sprache: Englisch

73,80 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung

This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics.

Students are introduced to several topics not typically covered until much later in their [...] include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing.

Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and [...] style remains light despite the rigorous and intensive content.

The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.

This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics.

Students are introduced to several topics not typically covered until much later in their [...] include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing.

Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and [...] style remains light despite the rigorous and intensive content.

The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.

Inhaltsverzeichnis
1 Introduction 91.1 The goal of physics . . . . . . . . . . . . . . . . . . . . . . . . 91.2 The connection between physics and mathematics . . . . . . . 101.3 Paradigm shifts . . . . . . . . . . . . . . . . . . . . . . . . . . 131.4 The Correspondence Principle . . . . . . . . . . . . . . . . . . 162 Symmetry and Physics 172.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 172.2 What is Symmetry? . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Role of Symmetry in Physics . . . . . . . . . . . . . . . . . . . 182.3.1 Symmetry as a guiding principle . . . . . . . . . . . . . 182.3.2 Symmetry and Conserved Quantities: Noether's Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.3 Symmetry as a tool for simplifying problems . . . . . . 192.4 Symmetries were made to be broken . . . . . . . . . . . . . . 202.4.1 Spacetime symmetries . . . . . . . . . . . . . . . . . . 202.4.2 Parity violation . . . . . . . . . . . . . . . . . . . . . . 212.4.3 Spontaneously broken symmetries . . . . . . . . . . . . 242.4.4 Variational calculations: Lifeguards and light rays . . . 273 Formal Aspects of Symmetry 303.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 303.2 Symmetries and Operations . . . . . . . . . . . . . . . . . . . 303.2.1 Denition of a symmetry operation . . . . . . . . . . . 303.2.2 Rules obeyed by symmetry operations . . . . . . . . . 323.2.3 Multiplication tables . . . . . . . . . . . . . . . . . . . 353.2.4 Symmetry and group theory . . . . . . . . . . . . . . . 363.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.1 The identity operation . . . . . . . . . . . . . . . . . . 373.3.2 Permutations of two identical objects . . . . . . . . . . 373.3.3 Permutations of three identical objects . . . . . . . . . 383.3.4 Rotations of regular polygons . . . . . . . . . . . . . . 393.4 Continuous vs discrete symmetries . . . . . . . . . . . . . . . 403.5 Symmetries and Conserved Quantities:Noether's Theorem . . . . . . . . . . . . . . . . . . . . . . . . 413.6 Supplementary: Variational Mechanics and the Proof of Noether'sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.6.1 Variational Mechanics: Principle of Least Action . . . . 423.6.2 Euler-Lagrange Equations . . . . . . . . . . . . . . . . 473.6.3 Proof of Noether's Theorem . . . . . . . . . . . . . . . 484 Symmetries and Linear Transformations 524.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 524.2 Review of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 534.2.1 Coordinate free denitions . . . . . . . . . . . . . . . . 534.2.2 Cartesian Coordinates . . . . . . . . . . . . . . . . . . 584.2.3 Vector operations in component form . . . . . . . . . . 594.2.4 Position vector . . . . . . . . . . . . . . . . . . . . . . 604.2.5 Dierentiation of vectors: velocity and acceleration . . 624.3 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . 634.3.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 634.3.2 Translations . . . . . . . . . . . . . . . . . . . . . . . . 644.3.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 664.3.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 674.4 Linear Transformations and matrices . . . . . . . . . . . . . . 684.4.1 Linear transformations as matrices . . . . . . . . . . . 684.4.2 Identity Transformation and Inverses . . . . . . . . . . 704.4.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 704.4.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 724.4.5 Matrix Representation of Permutations of Three Objects 734.5 Pythagoras and Geometry . . . . . . . . . . . . . . . . . . . . 745 Special Relativity I: The Basics 775.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 775.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 775.2.1 Frames5.2.2 Spacetime Diagrams . . . . . . . . . . . . . . . . . . . 785.2.3 Newtonian Relativity and Galilean Transformations . . 835.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.3.1 The Fundamental Postulate . . . . . . . . . . . . . . . 855.3.2 The problem with Galilean Relativity . . . . . . . . . . 855.3.3 Michelson-Morley Experiment . . . . . . . . . . . . . . 875.3.4 Maxwell's Equations . . . . . . . . . . . . . . . . . . . 905.4 Summary of Consequences . . . . . . . . . . . . . . . . . . . . 915.5 Relativity of Simultaneity . . . . . . . . . . . . . . . . . . . . 925.6 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.6.1 Derivation: . . . . . . . . . . . . . . . . . . . . . . . . 975.6.2 Proper Time . . . . . . . . . . . . . . . . . . . . . . . . 995.6.3 Experimental Conrmation . . . . . . . . . . . . . . . 1015.6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 1025.7 Lorentz Contraction . . . . . . . . . . . . . . . . . . . . . . . 1045.7.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.3 Proper Length and Proper Distance. . . . . . . . . . . 1045.7.4 Examples: . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Special Relativity II: In Depth 1106.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1106.2 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . 1106.2.1 Derivation of general form . . . . . . . . . . . . . . . . 1106.2.2 Properties of Lorentz Transformations . . . . . . . . . 1136.2.3 Lorentzian Geometry . . . . . . . . . . . . . . . . . . . 1166.3 The Light Cone . . . . . . . . . . . . . . . . . . . . . . . . . . 1196.4 Proper time revisited . . . . . . . . . . . . . . . . . . . . . . . 1206.5 Relativistic Addition of Velocities . . . . . . . . . . . . . . . . 1226.6 Relativistic Doppler Shift . . . . . . . . . . . . . . . . . . . . . 1246.6.1 Non-relativistic Doppler Shift Review . . . . . . . . . . 1246.6.2 Relativistic Doppler Shift . . . . . . . . . . . . . . . . 1246.7 Relativistic Energy and Momentum . . . . . . . . . . . . . . . 1276.7.1 Relativistic Energy Momentum Conservation . . . . . . 1276.7.2 Relativistic Inertia . . . . . . . . . . . . . . . . . . . . 1286.7.3 Relativistic Energy . . . . . . . . . . . . . . . . . . . . 1296.7.4 Relativistic Three-Momentum . . . . . . . . . . . . . . 1296.7.5 Relationship Between Relativistic Energy and Momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.7.6 Kinetic energy: . . . . . . . . . . . . . . . . . . . . . . 1306.7.7 Massless particles . . . . . . . . . . . . . . . . . . . . 1316.8 Space-time Vectors . . . . . . . . . . . . . . . . . . . . . . . . 1336.8.1 Position Four-Vector: . . . . . . . . . . . . . . . . . . . 1346.8.2 Four-momentum: . . . . . . . . . . . . . . . . . . . . . 1356.8.3 Null four-vectors . . . . . . . . . . . . . . . . . . . . . 1376.8.4 Relativistic Scattering . . . . . . . . . . . . . . . . . . 1376.8.5 More Examples . . . . . . . . . . . . . . . . . . . . . . 1386.9 Relativistic Units . . . . . . . . . . . . . . . . . . . . . . . . . 1396.10 Symmetry Redux . . . . . . . . . . . . . . . . . . . . . . . . . 1406.10.1 Matrix form of Lorentz Transformations . . . . . . . . 1406.10.2 Lorentz Transformations as a Symmetry Group . . . . 1426.11 Supplementary: Four vectors and tensors in covariant form . . 1437 General Relativity 1497.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1497.2 Problems with Newtonian Gravity . . . . . . . . . . . . . . . . 1497.2.1 Review of Newtonian Gravity . . . . . . . . . . . . . . 1497.2.2 Perihelion Shift of Mercury . . . . . . . . . . . . . . . 1517.2.3 Action at a Distance . . . . . . . . . . . . . . . . . . . 1527.2.4 The Puzzle of Inertial vs Gravitational Mass . . . . . . 1537.3 Einstein's Thinking: the Strong Principle of Equivalence . . . 1537.4 Geometry of Spacetime . . . . . . . . . . . . . . . . . . . . . . 1557.5 Some Consequences of General Relativity: . . . . . . . . . . . 1587.6 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . 1597.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1597.6.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . 1607.6.3 Recent Observations . . . . . . . . . . . . . . . . . . . 1617.7 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1647.7.4 Further Information . . . . . . . . . . . . . . . . . . . 1667.8 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1668 Introduction to the Quantum 1708.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1708.2 Light as particles . . . . . . . . . . . . . . . . . . . . . . . . . 1718.2.1 Review: Light as Waves . . . . . . . . . . . . . . . . . 1718.2.2 Photoelectric Eect . . . . . . . . . . . . . . . . . . . . 1718.2.3 Compton Scattering . . . . . . . . . . . . . . . . . . . 1758.3 Blackbody Radiation and the Ultraviolet Catastrophe . . . . . 1798.3.1 Blackbody Radiation . . . . . . . . . . . . . . . . . . . 1798.3.2 Derivation of Rayleigh-Jeans Law . . . . . . . . . . . . 1818.3.3 The ultraviolet catastrophe . . . . . . . . . . . . . . . 1888.3.4 Quantum resolution: . . . . . . . . . . . . . . . . . . . 1898.3.5 The Early Universe: the ultimate blackbody . . . . . . 1918.4 Particles as waves . . . . . . . . . . . . . . . . . . . . . . . . . 1968.4.1 Electron waves . . . . . . . . . . . . . . . . . . . . . . 1968.4.2 de Broglie Wavelength . . . . . . . . . . . . . . . . . . 1978.4.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1998.5 The Heisenberg Uncertainty Principle . . . . . . . . . . . . . . 2029 The Wave Function 2049.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 2049.2 Quantum vs Newtonian...
Details
Erscheinungsjahr: 2020
Fachbereich: Theoretische Physik
Genre: Physik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Einband - flex.(Paperback)
ISBN-13: 9783030554194
ISBN-10: 3030554198
Sprache: Englisch
Herstellernummer: 978-3-030-55419-4
Autor: Kunstatter, Gabor
Das, Saurya
Auflage: 1st ed. 2020
Hersteller: Springer
Springer, Berlin
Springer International Publishing
Abbildungen: XXIX, 390 p. 94 illus., 80 illus. in color.
Maße: 23 x 157 x 237 mm
Von/Mit: Gabor Kunstatter (u. a.)
Erscheinungsdatum: 20.10.2020
Gewicht: 0,634 kg
Artikel-ID: 118711174
Inhaltsverzeichnis
1 Introduction 91.1 The goal of physics . . . . . . . . . . . . . . . . . . . . . . . . 91.2 The connection between physics and mathematics . . . . . . . 101.3 Paradigm shifts . . . . . . . . . . . . . . . . . . . . . . . . . . 131.4 The Correspondence Principle . . . . . . . . . . . . . . . . . . 162 Symmetry and Physics 172.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 172.2 What is Symmetry? . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Role of Symmetry in Physics . . . . . . . . . . . . . . . . . . . 182.3.1 Symmetry as a guiding principle . . . . . . . . . . . . . 182.3.2 Symmetry and Conserved Quantities: Noether's Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.3 Symmetry as a tool for simplifying problems . . . . . . 192.4 Symmetries were made to be broken . . . . . . . . . . . . . . 202.4.1 Spacetime symmetries . . . . . . . . . . . . . . . . . . 202.4.2 Parity violation . . . . . . . . . . . . . . . . . . . . . . 212.4.3 Spontaneously broken symmetries . . . . . . . . . . . . 242.4.4 Variational calculations: Lifeguards and light rays . . . 273 Formal Aspects of Symmetry 303.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 303.2 Symmetries and Operations . . . . . . . . . . . . . . . . . . . 303.2.1 Denition of a symmetry operation . . . . . . . . . . . 303.2.2 Rules obeyed by symmetry operations . . . . . . . . . 323.2.3 Multiplication tables . . . . . . . . . . . . . . . . . . . 353.2.4 Symmetry and group theory . . . . . . . . . . . . . . . 363.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.1 The identity operation . . . . . . . . . . . . . . . . . . 373.3.2 Permutations of two identical objects . . . . . . . . . . 373.3.3 Permutations of three identical objects . . . . . . . . . 383.3.4 Rotations of regular polygons . . . . . . . . . . . . . . 393.4 Continuous vs discrete symmetries . . . . . . . . . . . . . . . 403.5 Symmetries and Conserved Quantities:Noether's Theorem . . . . . . . . . . . . . . . . . . . . . . . . 413.6 Supplementary: Variational Mechanics and the Proof of Noether'sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.6.1 Variational Mechanics: Principle of Least Action . . . . 423.6.2 Euler-Lagrange Equations . . . . . . . . . . . . . . . . 473.6.3 Proof of Noether's Theorem . . . . . . . . . . . . . . . 484 Symmetries and Linear Transformations 524.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 524.2 Review of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 534.2.1 Coordinate free denitions . . . . . . . . . . . . . . . . 534.2.2 Cartesian Coordinates . . . . . . . . . . . . . . . . . . 584.2.3 Vector operations in component form . . . . . . . . . . 594.2.4 Position vector . . . . . . . . . . . . . . . . . . . . . . 604.2.5 Dierentiation of vectors: velocity and acceleration . . 624.3 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . 634.3.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 634.3.2 Translations . . . . . . . . . . . . . . . . . . . . . . . . 644.3.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 664.3.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 674.4 Linear Transformations and matrices . . . . . . . . . . . . . . 684.4.1 Linear transformations as matrices . . . . . . . . . . . 684.4.2 Identity Transformation and Inverses . . . . . . . . . . 704.4.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 704.4.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 724.4.5 Matrix Representation of Permutations of Three Objects 734.5 Pythagoras and Geometry . . . . . . . . . . . . . . . . . . . . 745 Special Relativity I: The Basics 775.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 775.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 775.2.1 Frames5.2.2 Spacetime Diagrams . . . . . . . . . . . . . . . . . . . 785.2.3 Newtonian Relativity and Galilean Transformations . . 835.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.3.1 The Fundamental Postulate . . . . . . . . . . . . . . . 855.3.2 The problem with Galilean Relativity . . . . . . . . . . 855.3.3 Michelson-Morley Experiment . . . . . . . . . . . . . . 875.3.4 Maxwell's Equations . . . . . . . . . . . . . . . . . . . 905.4 Summary of Consequences . . . . . . . . . . . . . . . . . . . . 915.5 Relativity of Simultaneity . . . . . . . . . . . . . . . . . . . . 925.6 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.6.1 Derivation: . . . . . . . . . . . . . . . . . . . . . . . . 975.6.2 Proper Time . . . . . . . . . . . . . . . . . . . . . . . . 995.6.3 Experimental Conrmation . . . . . . . . . . . . . . . 1015.6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 1025.7 Lorentz Contraction . . . . . . . . . . . . . . . . . . . . . . . 1045.7.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.3 Proper Length and Proper Distance. . . . . . . . . . . 1045.7.4 Examples: . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Special Relativity II: In Depth 1106.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1106.2 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . 1106.2.1 Derivation of general form . . . . . . . . . . . . . . . . 1106.2.2 Properties of Lorentz Transformations . . . . . . . . . 1136.2.3 Lorentzian Geometry . . . . . . . . . . . . . . . . . . . 1166.3 The Light Cone . . . . . . . . . . . . . . . . . . . . . . . . . . 1196.4 Proper time revisited . . . . . . . . . . . . . . . . . . . . . . . 1206.5 Relativistic Addition of Velocities . . . . . . . . . . . . . . . . 1226.6 Relativistic Doppler Shift . . . . . . . . . . . . . . . . . . . . . 1246.6.1 Non-relativistic Doppler Shift Review . . . . . . . . . . 1246.6.2 Relativistic Doppler Shift . . . . . . . . . . . . . . . . 1246.7 Relativistic Energy and Momentum . . . . . . . . . . . . . . . 1276.7.1 Relativistic Energy Momentum Conservation . . . . . . 1276.7.2 Relativistic Inertia . . . . . . . . . . . . . . . . . . . . 1286.7.3 Relativistic Energy . . . . . . . . . . . . . . . . . . . . 1296.7.4 Relativistic Three-Momentum . . . . . . . . . . . . . . 1296.7.5 Relationship Between Relativistic Energy and Momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.7.6 Kinetic energy: . . . . . . . . . . . . . . . . . . . . . . 1306.7.7 Massless particles . . . . . . . . . . . . . . . . . . . . 1316.8 Space-time Vectors . . . . . . . . . . . . . . . . . . . . . . . . 1336.8.1 Position Four-Vector: . . . . . . . . . . . . . . . . . . . 1346.8.2 Four-momentum: . . . . . . . . . . . . . . . . . . . . . 1356.8.3 Null four-vectors . . . . . . . . . . . . . . . . . . . . . 1376.8.4 Relativistic Scattering . . . . . . . . . . . . . . . . . . 1376.8.5 More Examples . . . . . . . . . . . . . . . . . . . . . . 1386.9 Relativistic Units . . . . . . . . . . . . . . . . . . . . . . . . . 1396.10 Symmetry Redux . . . . . . . . . . . . . . . . . . . . . . . . . 1406.10.1 Matrix form of Lorentz Transformations . . . . . . . . 1406.10.2 Lorentz Transformations as a Symmetry Group . . . . 1426.11 Supplementary: Four vectors and tensors in covariant form . . 1437 General Relativity 1497.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1497.2 Problems with Newtonian Gravity . . . . . . . . . . . . . . . . 1497.2.1 Review of Newtonian Gravity . . . . . . . . . . . . . . 1497.2.2 Perihelion Shift of Mercury . . . . . . . . . . . . . . . 1517.2.3 Action at a Distance . . . . . . . . . . . . . . . . . . . 1527.2.4 The Puzzle of Inertial vs Gravitational Mass . . . . . . 1537.3 Einstein's Thinking: the Strong Principle of Equivalence . . . 1537.4 Geometry of Spacetime . . . . . . . . . . . . . . . . . . . . . . 1557.5 Some Consequences of General Relativity: . . . . . . . . . . . 1587.6 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . 1597.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1597.6.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . 1607.6.3 Recent Observations . . . . . . . . . . . . . . . . . . . 1617.7 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1647.7.4 Further Information . . . . . . . . . . . . . . . . . . . 1667.8 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1668 Introduction to the Quantum 1708.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1708.2 Light as particles . . . . . . . . . . . . . . . . . . . . . . . . . 1718.2.1 Review: Light as Waves . . . . . . . . . . . . . . . . . 1718.2.2 Photoelectric Eect . . . . . . . . . . . . . . . . . . . . 1718.2.3 Compton Scattering . . . . . . . . . . . . . . . . . . . 1758.3 Blackbody Radiation and the Ultraviolet Catastrophe . . . . . 1798.3.1 Blackbody Radiation . . . . . . . . . . . . . . . . . . . 1798.3.2 Derivation of Rayleigh-Jeans Law . . . . . . . . . . . . 1818.3.3 The ultraviolet catastrophe . . . . . . . . . . . . . . . 1888.3.4 Quantum resolution: . . . . . . . . . . . . . . . . . . . 1898.3.5 The Early Universe: the ultimate blackbody . . . . . . 1918.4 Particles as waves . . . . . . . . . . . . . . . . . . . . . . . . . 1968.4.1 Electron waves . . . . . . . . . . . . . . . . . . . . . . 1968.4.2 de Broglie Wavelength . . . . . . . . . . . . . . . . . . 1978.4.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1998.5 The Heisenberg Uncertainty Principle . . . . . . . . . . . . . . 2029 The Wave Function 2049.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 2049.2 Quantum vs Newtonian...
Details
Erscheinungsjahr: 2020
Fachbereich: Theoretische Physik
Genre: Physik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Einband - flex.(Paperback)
ISBN-13: 9783030554194
ISBN-10: 3030554198
Sprache: Englisch
Herstellernummer: 978-3-030-55419-4
Autor: Kunstatter, Gabor
Das, Saurya
Auflage: 1st ed. 2020
Hersteller: Springer
Springer, Berlin
Springer International Publishing
Abbildungen: XXIX, 390 p. 94 illus., 80 illus. in color.
Maße: 23 x 157 x 237 mm
Von/Mit: Gabor Kunstatter (u. a.)
Erscheinungsdatum: 20.10.2020
Gewicht: 0,634 kg
Artikel-ID: 118711174
Warnhinweis