142,50 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
* Gives readers a "physical" picture of electric machines and drives without resorting to mathematical transformations for easy visualization
* Confirms the physics-based analysis of electric drives mathematically
* Provides readers with an analysis of electric machines in a way that can be easily interfaced to common power electronic converters and controlled using any control scheme
* Makes the MATLAB/Simulink files used in examples available to anyone in an accompanying website
* Reinforces fundamentals with a variety of discussion questions, concept quizzes, and homework problems
* Gives readers a "physical" picture of electric machines and drives without resorting to mathematical transformations for easy visualization
* Confirms the physics-based analysis of electric drives mathematically
* Provides readers with an analysis of electric machines in a way that can be easily interfaced to common power electronic converters and controlled using any control scheme
* Makes the MATLAB/Simulink files used in examples available to anyone in an accompanying website
* Reinforces fundamentals with a variety of discussion questions, concept quizzes, and homework problems
Preface xiii
Notation xv
1 Applications: Speed and Torque Control 1
1-1 History 1
1-2 Background 2
1-3 Types of ac Drives Discussed and the Simulation Software 2
1-4 Structure of this Textbook 3
1-5 "Test" Induction Motor 3
1-6 Summary 4
References 4
Problems 4
2 Induction Machine Equations in Phase Quantities: Assisted by Space Vectors 6
2-1 Introduction 6
2-2 Sinusoidally Distributed Stator Windings 6
2-2-1 Three-Phase, Sinusoidally Distributed Stator Windings 8
2-3 Stator Inductances (Rotor Open-Circuited) 9
2-3-1 Stator Single-Phase Magnetizing Inductance Lm,1-phase 9
2-3-2 Stator Mutual-Inductance Lmutual 11
2-3-3 Per-Phase Magnetizing-Inductance Lm 12
2-3-4 Stator-Inductance Ls 12
2-4 Equivalent Windings in a Squirrel-Cage Rotor 13
2-4-1 Rotor-Winding Inductances (Stator Open-Circuited) 13
2-5 Mutual Inductances between the Stator and the Rotor Phase Windings 15
2-6 Review of Space Vectors 15
2-6-1 Relationship between Phasors and Space Vectors in Sinusoidal Steady State 17
2-7 Flux Linkages 18
2-7-1 Stator Flux Linkage (Rotor Open-Circuited) 18
2-7-2 Rotor Flux Linkage (Stator Open-Circuited) 19
2-7-3 Stator and Rotor Flux Linkages (Simultaneous Stator and Rotor Currents) 20
2-8 Stator and Rotor Voltage Equations in Terms of Space Vectors 21
2-9 Making the Case for a dq -Winding Analysis 22
2-10 Summary 25
Reference 25
Problems 26
3 Dynamic Analysis of Induction Machines in Terms of dq Windings 28
3-1 Introduction 28
3-2 dq Winding Representation 28
3-2-1 Stator dq Winding Representation 29
3-2-2 Rotor dq Windings (Along the Same dq-Axes as in the Stator) 31
3-2-3 Mutual Inductance between dq Windings on the Stator and the Rotor 32
3-3 Mathematical Relationships of the dq Windings (at an Arbitrary Speed ¿d) 33
3-3-1 Relating dq Winding Variables to Phase Winding Variables 35
3-3-2 Flux Linkages of dq Windings in Terms of Their Currents 36
3-3-3 dq Winding Voltage Equations 37
3-3-4 Obtaining Fluxes and Currents with Voltages as Inputs 40
3-4 Choice of the dqWinding Speed ¿d 41
3-5 Electromagnetic Torque 42
3-5-1 Torque on the Rotor d -Axis Winding 42
3-5-2 Torque on the Rotor q -Axis Winding 43
3-5-3 Net Electromagnetic Torque Tem on the Rotor 44
3-6 Electrodynamics 44
3-7 d- and q-Axis Equivalent Circuits 45
3-8 Relationship between the dq Windings and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State 46
3-9 Computer Simulation 47
3-9-1 Calculation of Initial Conditions 48
3-10 Summary 56
Reference 56
Problems 57
4 Vector Control of Induction-Motor Drives: A Qualitative Examination 59
4-1 Introduction 59
4-2 Emulation of dc and Brushless dc Drive Performance 59
4-2-1 Vector Control of Induction-Motor Drives 61
4-3 Analogy to a Current-Excited Transformer with a Shorted Secondary 62
4-3-1 Using the Transformer Equivalent Circuit 65
4-4 d- and q -Axis Winding Representation 66
4-5 Vector Control with d-Axis Aligned with the Rotor Flux 67
4-5-1 Initial Flux Buildup Prior to t = 0¿67
4-5-2 Step Change in Torque at t = 0+68
4-6 Torque, Speed, and Position Control 72
4-6-1 The Reference Current isq t * ( ) 72
4-6-2 The Reference Current isd t ( ) 73
4-6-3 Transformation and Inverse-Transformation of Stator Currents 73
4-6-4 The Estimated Motor Model for Vector Control 74
4-7 The Power-Processing Unit (PPU) 75
4-8 Summary 76
References 76
Problems 77
5 Mathematical Description of Vector Control in Induction Machines 79
5-1 Motor Model with the d-Axis Aligned Along the Rotor Flux Linkage ¿ r-Axis 79
5-1-1 Calculation of ¿dA 81
5-1-2 Calculation of Tem 81
5-1-3 d-Axis Rotor Flux Linkage Dynamics 82
5-1-4 Motor Model 82
5-2 Vector Control 84
5-2-1 Speed and Position Control Loops 86
5-2-2 Initial Startup 89
5-2-3 Calculating the Stator Voltages to Be Applied 89
5-2-4 Designing the PI Controllers 90
5-3 Summary 95
Reference 95
Problems 95
6 Detuning Effects in Induction Motor Vector Control 97
6-1 Effect of Detuning Due to Incorrect Rotor Time Constant ¿r 97
6-2 Steady-State Analysis 101
6-2-1 Steady-State isd /is*d 104
6-2-2 Steady-State isq /is*q 104
6-2-3 Steady-State ¿err 105
6-2-4 Steady-State Tem /Te*m 106
6-3 Summary 107
References 107
Problems 108
7 Dynamic Analysis of Doubly Fed Induction Generators and Their Vector Control 109
7-1 Understanding DFIG Operation 110
7-2 Dynamic Analysis of DFIG 116
7-3 Vector Control of DFIG 116
7-4 Summary 117
References 117
Problems 117
8 Space Vector Pulse Width-Modulated (SV-PWM) Inverters 119
8-1 Introduction 119
8-2 Synthesis of Stator Voltage Space Vector vsa 119
8-3 Computer Simulation of SV-PWM Inverter 124
8-4 Limit on the Amplitude ¿Vs of the Stator Voltage Space Vectov sa 125
Summary 128
References 128
Problems 129
9 Direct Torque Control (DTC) and Encoderless Operation of Induction Motor Drives 130
9-1 Introduction 130
9-2 System Overview 130
9-3 Principle of Encoderless DTC Operation 131
9-4 Calculation of ¿s, ¿ r, Tem, and ¿m 132
9-4-1 Calculation of the Stator Flux ¿ s 132
9-4-2 Calculation of the Rotor Flux ¿ r 133
9-4-3 Calculation of the Electromagnetic Torque Tem 134
9-4-4 Calculation of the Rotor Speed ¿m 135
9-5 Calculation of the Stator Voltage Space Vector 136
9-6 Direct Torque Control Using dq-Axes 139
9-7 Summary 139
References 139
Problems 139
Appendix 9-A 140
Derivation of Torque Expressions 140
10 Vector Control of Permanent-Magnet Synchronous Motor Drives 143
10-1 Introduction 143
10-2 d-q Analysis of Permanent Magnet (Nonsalient-Pole) Synchronous Machines 143
10-2-1 Flux Linkages 144
10-2-2 Stator dq Winding Voltages 144
10-2-3 Electromagnetic Torque 145
10-2-4 Electrodynamics 145
10-2-5 Relationship between the dq Circuits and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State 145
10-2-6 dq-Based Dynamic Controller for "Brushless DC" Drives 147
10-3 Salient-Pole Synchronous Machines 151
10-3-1 Inductances 152
10-3-2 Flux Linkages 153
10-3-3 Winding Voltages 153
10-3-4 Electromagnetic Torque 154
10-3-5 dq-Axis Equivalent Circuits 154
10-3-6 Space Vector Diagram in Steady State 154
10-4 Summary 156
References 156
Problems 156
11 Switched-Reluctance Motor (SRM) Drives 157
11-1 Introduction 157
11-2 Switched-Reluctance Motor 157
11-2-1 Electromagnetic Torque Tem 159
11-2-2 Induced Back-EMF ea 161
11-3 Instantaneous Waveforms 162
11-4 Role of Magnetic Saturation 164
11-5 Power Processing Units for SRM Drives 165
11-6 Determining the Rotor Position for Encoderles Operation 166
11-7 Control in Motoring Mode 166
11-8 Summary 167
References 167
Problems 167
Index 169
Erscheinungsjahr: | 2014 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 220 S. |
ISBN-13: | 9781118485484 |
ISBN-10: | 1118485483 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Mohan, Ned |
Hersteller: |
Wiley
John Wiley & Sons |
Maße: | 240 x 161 x 15 mm |
Von/Mit: | Ned Mohan |
Erscheinungsdatum: | 25.08.2014 |
Gewicht: | 0,469 kg |
Preface xiii
Notation xv
1 Applications: Speed and Torque Control 1
1-1 History 1
1-2 Background 2
1-3 Types of ac Drives Discussed and the Simulation Software 2
1-4 Structure of this Textbook 3
1-5 "Test" Induction Motor 3
1-6 Summary 4
References 4
Problems 4
2 Induction Machine Equations in Phase Quantities: Assisted by Space Vectors 6
2-1 Introduction 6
2-2 Sinusoidally Distributed Stator Windings 6
2-2-1 Three-Phase, Sinusoidally Distributed Stator Windings 8
2-3 Stator Inductances (Rotor Open-Circuited) 9
2-3-1 Stator Single-Phase Magnetizing Inductance Lm,1-phase 9
2-3-2 Stator Mutual-Inductance Lmutual 11
2-3-3 Per-Phase Magnetizing-Inductance Lm 12
2-3-4 Stator-Inductance Ls 12
2-4 Equivalent Windings in a Squirrel-Cage Rotor 13
2-4-1 Rotor-Winding Inductances (Stator Open-Circuited) 13
2-5 Mutual Inductances between the Stator and the Rotor Phase Windings 15
2-6 Review of Space Vectors 15
2-6-1 Relationship between Phasors and Space Vectors in Sinusoidal Steady State 17
2-7 Flux Linkages 18
2-7-1 Stator Flux Linkage (Rotor Open-Circuited) 18
2-7-2 Rotor Flux Linkage (Stator Open-Circuited) 19
2-7-3 Stator and Rotor Flux Linkages (Simultaneous Stator and Rotor Currents) 20
2-8 Stator and Rotor Voltage Equations in Terms of Space Vectors 21
2-9 Making the Case for a dq -Winding Analysis 22
2-10 Summary 25
Reference 25
Problems 26
3 Dynamic Analysis of Induction Machines in Terms of dq Windings 28
3-1 Introduction 28
3-2 dq Winding Representation 28
3-2-1 Stator dq Winding Representation 29
3-2-2 Rotor dq Windings (Along the Same dq-Axes as in the Stator) 31
3-2-3 Mutual Inductance between dq Windings on the Stator and the Rotor 32
3-3 Mathematical Relationships of the dq Windings (at an Arbitrary Speed ¿d) 33
3-3-1 Relating dq Winding Variables to Phase Winding Variables 35
3-3-2 Flux Linkages of dq Windings in Terms of Their Currents 36
3-3-3 dq Winding Voltage Equations 37
3-3-4 Obtaining Fluxes and Currents with Voltages as Inputs 40
3-4 Choice of the dqWinding Speed ¿d 41
3-5 Electromagnetic Torque 42
3-5-1 Torque on the Rotor d -Axis Winding 42
3-5-2 Torque on the Rotor q -Axis Winding 43
3-5-3 Net Electromagnetic Torque Tem on the Rotor 44
3-6 Electrodynamics 44
3-7 d- and q-Axis Equivalent Circuits 45
3-8 Relationship between the dq Windings and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State 46
3-9 Computer Simulation 47
3-9-1 Calculation of Initial Conditions 48
3-10 Summary 56
Reference 56
Problems 57
4 Vector Control of Induction-Motor Drives: A Qualitative Examination 59
4-1 Introduction 59
4-2 Emulation of dc and Brushless dc Drive Performance 59
4-2-1 Vector Control of Induction-Motor Drives 61
4-3 Analogy to a Current-Excited Transformer with a Shorted Secondary 62
4-3-1 Using the Transformer Equivalent Circuit 65
4-4 d- and q -Axis Winding Representation 66
4-5 Vector Control with d-Axis Aligned with the Rotor Flux 67
4-5-1 Initial Flux Buildup Prior to t = 0¿67
4-5-2 Step Change in Torque at t = 0+68
4-6 Torque, Speed, and Position Control 72
4-6-1 The Reference Current isq t * ( ) 72
4-6-2 The Reference Current isd t ( ) 73
4-6-3 Transformation and Inverse-Transformation of Stator Currents 73
4-6-4 The Estimated Motor Model for Vector Control 74
4-7 The Power-Processing Unit (PPU) 75
4-8 Summary 76
References 76
Problems 77
5 Mathematical Description of Vector Control in Induction Machines 79
5-1 Motor Model with the d-Axis Aligned Along the Rotor Flux Linkage ¿ r-Axis 79
5-1-1 Calculation of ¿dA 81
5-1-2 Calculation of Tem 81
5-1-3 d-Axis Rotor Flux Linkage Dynamics 82
5-1-4 Motor Model 82
5-2 Vector Control 84
5-2-1 Speed and Position Control Loops 86
5-2-2 Initial Startup 89
5-2-3 Calculating the Stator Voltages to Be Applied 89
5-2-4 Designing the PI Controllers 90
5-3 Summary 95
Reference 95
Problems 95
6 Detuning Effects in Induction Motor Vector Control 97
6-1 Effect of Detuning Due to Incorrect Rotor Time Constant ¿r 97
6-2 Steady-State Analysis 101
6-2-1 Steady-State isd /is*d 104
6-2-2 Steady-State isq /is*q 104
6-2-3 Steady-State ¿err 105
6-2-4 Steady-State Tem /Te*m 106
6-3 Summary 107
References 107
Problems 108
7 Dynamic Analysis of Doubly Fed Induction Generators and Their Vector Control 109
7-1 Understanding DFIG Operation 110
7-2 Dynamic Analysis of DFIG 116
7-3 Vector Control of DFIG 116
7-4 Summary 117
References 117
Problems 117
8 Space Vector Pulse Width-Modulated (SV-PWM) Inverters 119
8-1 Introduction 119
8-2 Synthesis of Stator Voltage Space Vector vsa 119
8-3 Computer Simulation of SV-PWM Inverter 124
8-4 Limit on the Amplitude ¿Vs of the Stator Voltage Space Vectov sa 125
Summary 128
References 128
Problems 129
9 Direct Torque Control (DTC) and Encoderless Operation of Induction Motor Drives 130
9-1 Introduction 130
9-2 System Overview 130
9-3 Principle of Encoderless DTC Operation 131
9-4 Calculation of ¿s, ¿ r, Tem, and ¿m 132
9-4-1 Calculation of the Stator Flux ¿ s 132
9-4-2 Calculation of the Rotor Flux ¿ r 133
9-4-3 Calculation of the Electromagnetic Torque Tem 134
9-4-4 Calculation of the Rotor Speed ¿m 135
9-5 Calculation of the Stator Voltage Space Vector 136
9-6 Direct Torque Control Using dq-Axes 139
9-7 Summary 139
References 139
Problems 139
Appendix 9-A 140
Derivation of Torque Expressions 140
10 Vector Control of Permanent-Magnet Synchronous Motor Drives 143
10-1 Introduction 143
10-2 d-q Analysis of Permanent Magnet (Nonsalient-Pole) Synchronous Machines 143
10-2-1 Flux Linkages 144
10-2-2 Stator dq Winding Voltages 144
10-2-3 Electromagnetic Torque 145
10-2-4 Electrodynamics 145
10-2-5 Relationship between the dq Circuits and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State 145
10-2-6 dq-Based Dynamic Controller for "Brushless DC" Drives 147
10-3 Salient-Pole Synchronous Machines 151
10-3-1 Inductances 152
10-3-2 Flux Linkages 153
10-3-3 Winding Voltages 153
10-3-4 Electromagnetic Torque 154
10-3-5 dq-Axis Equivalent Circuits 154
10-3-6 Space Vector Diagram in Steady State 154
10-4 Summary 156
References 156
Problems 156
11 Switched-Reluctance Motor (SRM) Drives 157
11-1 Introduction 157
11-2 Switched-Reluctance Motor 157
11-2-1 Electromagnetic Torque Tem 159
11-2-2 Induced Back-EMF ea 161
11-3 Instantaneous Waveforms 162
11-4 Role of Magnetic Saturation 164
11-5 Power Processing Units for SRM Drives 165
11-6 Determining the Rotor Position for Encoderles Operation 166
11-7 Control in Motoring Mode 166
11-8 Summary 167
References 167
Problems 167
Index 169
Erscheinungsjahr: | 2014 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 220 S. |
ISBN-13: | 9781118485484 |
ISBN-10: | 1118485483 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Mohan, Ned |
Hersteller: |
Wiley
John Wiley & Sons |
Maße: | 240 x 161 x 15 mm |
Von/Mit: | Ned Mohan |
Erscheinungsdatum: | 25.08.2014 |
Gewicht: | 0,469 kg |