Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Algorithms for Convex Optimization
Taschenbuch von Nisheeth K. Vishnoi
Sprache: Englisch

46,00 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Algorithms for Convex Optimization are the workhorses of data-driven, technological advancements in machine learning and artificial intelligence. This concise, modern guide to deriving these algorithms is self-contained and accessible to advanced students, practitioners, and researchers in computer science, operations research, and data science.
Algorithms for Convex Optimization are the workhorses of data-driven, technological advancements in machine learning and artificial intelligence. This concise, modern guide to deriving these algorithms is self-contained and accessible to advanced students, practitioners, and researchers in computer science, operations research, and data science.
Über den Autor
Nisheeth K. Vishnoi is a Professor of Computer Science at Yale University. His research areas include theoretical computer science, optimization, and machine learning. He is a recipient of the Best Paper Award at IEEE FOCS in 2005, the IBM Research Pat Goldberg Memorial Award in 2006, the Indian National Science Academy Young Scientist Award in 2011, and the Best Paper award at ACM FAccT in 2019. He was elected an ACM Fellow in 2019. He obtained a bachelor degree in Computer Science and Engineering from IIT Bombay and a Ph.D. in Algorithms, Combinatorics and Optimization from Georgia Institute of Technology.
Inhaltsverzeichnis
1. Bridging continuous and discrete optimization; 2. Preliminaries; 3. Convexity; 4. Convex optimization and efficiency; 5. Duality and optimality; 6. Gradient descent; 7. Mirror descent and multiplicative weights update; 8. Accelerated gradient descent; 9. Newton's method; 10. An interior point method for linear programming; 11. Variants of the interior point method and self-concordance; 12. Ellipsoid method for linear programming; 13. Ellipsoid method for convex optimization.
Details
Erscheinungsjahr: 2021
Fachbereich: Programmiersprachen
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781108741774
ISBN-10: 1108741770
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Vishnoi, Nisheeth K.
Hersteller: Cambridge University Press
Maße: 229 x 152 x 20 mm
Von/Mit: Nisheeth K. Vishnoi
Erscheinungsdatum: 07.10.2021
Gewicht: 0,553 kg
Artikel-ID: 119552296
Über den Autor
Nisheeth K. Vishnoi is a Professor of Computer Science at Yale University. His research areas include theoretical computer science, optimization, and machine learning. He is a recipient of the Best Paper Award at IEEE FOCS in 2005, the IBM Research Pat Goldberg Memorial Award in 2006, the Indian National Science Academy Young Scientist Award in 2011, and the Best Paper award at ACM FAccT in 2019. He was elected an ACM Fellow in 2019. He obtained a bachelor degree in Computer Science and Engineering from IIT Bombay and a Ph.D. in Algorithms, Combinatorics and Optimization from Georgia Institute of Technology.
Inhaltsverzeichnis
1. Bridging continuous and discrete optimization; 2. Preliminaries; 3. Convexity; 4. Convex optimization and efficiency; 5. Duality and optimality; 6. Gradient descent; 7. Mirror descent and multiplicative weights update; 8. Accelerated gradient descent; 9. Newton's method; 10. An interior point method for linear programming; 11. Variants of the interior point method and self-concordance; 12. Ellipsoid method for linear programming; 13. Ellipsoid method for convex optimization.
Details
Erscheinungsjahr: 2021
Fachbereich: Programmiersprachen
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781108741774
ISBN-10: 1108741770
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Vishnoi, Nisheeth K.
Hersteller: Cambridge University Press
Maße: 229 x 152 x 20 mm
Von/Mit: Nisheeth K. Vishnoi
Erscheinungsdatum: 07.10.2021
Gewicht: 0,553 kg
Artikel-ID: 119552296
Warnhinweis