Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
An Integrated Framework for Structural Geology
Kinematics, Dynamics, and Rheology of Deformed Rocks
Taschenbuch von Steven Wojtal (u. a.)
Sprache: Englisch

56,65 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung

A modern and practice-oriented approach to structural geology

An Integrated Framework for Structural Geology: Kinematics, Dynamics, and Rheology of Deformed Rocks builds a framework for structural geology from geometrical description, kinematic analysis, dynamic evolution, and rheological investigation of deformed rocks. The unique approach taken by the book is to integrate these principles of continuum mechanics with the description of rock microstructures and inferences about deformation mechanisms. Field, theoretical and laboratory approaches to structural geology are all considered, including the application of rock mechanics experiments to nature.

Readers will also find:

  • Three case studies that illustrate how the framework can be applied to deformation at different levels in the crust and in an applied structural geology context
  • Hundreds of detailed, two-color illustrations of exceptional clarity, as well as many microstructural and field photographs
  • The quantitative basis of structural geology delivered through clear mathematics

Written for advanced undergraduate and graduate students in geology, An Integrated Framework for Structural Geology will also earn a place in the libraries of practicing geologists with an interest in a one-stop resource on structural geology.

A modern and practice-oriented approach to structural geology

An Integrated Framework for Structural Geology: Kinematics, Dynamics, and Rheology of Deformed Rocks builds a framework for structural geology from geometrical description, kinematic analysis, dynamic evolution, and rheological investigation of deformed rocks. The unique approach taken by the book is to integrate these principles of continuum mechanics with the description of rock microstructures and inferences about deformation mechanisms. Field, theoretical and laboratory approaches to structural geology are all considered, including the application of rock mechanics experiments to nature.

Readers will also find:

  • Three case studies that illustrate how the framework can be applied to deformation at different levels in the crust and in an applied structural geology context
  • Hundreds of detailed, two-color illustrations of exceptional clarity, as well as many microstructural and field photographs
  • The quantitative basis of structural geology delivered through clear mathematics

Written for advanced undergraduate and graduate students in geology, An Integrated Framework for Structural Geology will also earn a place in the libraries of practicing geologists with an interest in a one-stop resource on structural geology.

Über den Autor

Steven Wojtal is Professor of Geoscience at Oberlin College in Oberlin, Ohio, United States.

Tom Blenkinsop is Professor in Earth Science at Cardiff University, United Kingdom.

Basil Tikoff is Professor of Geoscience at the University of Wisconsin-Madison, United States.

Inhaltsverzeichnis

Acknowledgements xvii

Website xix

1 A Framework for Structural Geology 1

1.1 Introduction 1

1.1.1 Deformation 1

1.1.2 Empirical vs. Theoretical Approaches 1

1.1.3 Continuum Mechanics and its Applicability to Structural Geology 6

1.1.4 How to use this Book 6

References 8

2 Structures Produced by Deformation 10

2.1 Geological Structures 10

2.1.1 Structural Fabrics 10

2.1.2 Folds and Boudinage 12

2.1.3 Fractures and Stylolites 15

2.1.4 Faults and Fault Zones 17

2.1.5 Shear Zones 22

2.2 Additional Considerations 25

3 Microstructures 26

3.1 Introduction 26

3.1.1 Overview 26

3.1.2 Framework 27

3.1.3 Imaging of Microstructures 27

3.2 Fractures 28

3.3 Fault Rocks 30

3.4 Overgrowths, Pressure Shadows and Fringes, and Veins 33

3.5 Indenting, Truncating and Interpenetrating Grain Contacts, Strain Caps, and Stylolites 37

3.6 Aligned Grain Boundaries, T Grain Boundaries, and Foam Texture 38

3.7 Undulose Extinction, Subgrains, Deformation and Kink Bands, Deformation Lamellae, Grain Boundary Bulges, and Core-and-Mantle Microstructure 40

3.8 Deformation Twins 43

3.9 Grain Shape Fabrics, Ribbon Grains, and Gneissic Banding 43

3.10 Porphyroblasts 47

3.11 Crystallographic Fabrics (Crystallographic Preferred Orientations) 49

3.12 Shear Sense Indicators, Mylonites, and Porphyroclasts 49

3.12.1 Asymmetric Pressure Shadows and Fringes 53

3.12.2 Foliation Obliquity and Curvature 55

3.12.3 SC, SC¿, and SCC¿ Fabrics 55

3.12.4 Porphyroclast Systems 56

3.12.5 Precautions with Shear Sense Determination 59

3.13 Collecting Oriented Samples and Relating Sample to Geographic Frames of Reference 60

References 65

4 Displacements 66

4.1 Overview 66

4.2 Chapter Organization 66

4A Displacements: Conceptual Foundation 67

4A.1 Specifying Displacements or Individual Particles 67

4A.1.1 Basic Ideas 67

4A.1.2 Geological Example 69

4A.2 Particle Paths and Velocities 70

4A.2.1 Particle Paths 70

4A.2.2 Velocities 71

4A.3 Displacements of Collections of Particles - Displacement Fields 74

4A.3.1 Displacement Fields 74

4A.3.2 Uniform vs. Nonuniform and Distributed vs. Discrete Displacement Fields 76

4A.3.3 Classes of Displacement Fields 77

4A.4 Components of Displacement Fields: Translation, Rotation, and Pure Strain 79

4A.5 Idealized, Two-Dimensional Displacement Fields 85

4A.5.1 Simple Shear 87

4A.5.2 Pure Shear 88

4A.6 Idealized, Three-Dimensional Displacement Fields 89

4A.7 Summary 90

4B Displacements: Comprehensive Treatment 90

4B.1 Specifying Displacements for Individual Particles 90

4B.1.1 Defining Vector Quantities 90

4B.1.2 Types of Vectors 92

4B.1.3 Relating Position and Displacement Vectors 94

4B.1.4 Characterizing Vector Quantities 95

4B.2 Particle Paths and Velocities 97

4B.2.1 Incremental Displacements for Particles 97

4B.2.2 Particle Paths and Movement Histories 98

4b.2.3 Dated Particle Paths, Instantaneous Movement Directions, and Velocities 99

4B.3 Displacements of Collections of Particles - Displacement Fields 101

4B.3.1 Concept of a Displacement Field 101

4B.3.2 Field Quantities 103

4b.3.3 Gradients of the Displacement Field: Discrete and Distributed Deformation 103

4B.3.4 Idealized Versus True Gradients of the Displacement Field 104

4B.4 The Displacement Gradient Tensor - Relating Position and Displacement Vectors 106

4b.4.1 Components of Displacement Fields: Translation, Rotation, and Pure Strain 107

4B.4.2 Translation Displacement Fields 107

4B.4.3 Rigid Rotation Displacement Fields 107

4B.4.4 Pure Strain Displacement Fields 109

4B.4.5 Total Displacement Fields 110

4b.4.6 Using Displacement Gradient Matrices to Represent Displacement Fields 110

4B.5 Idealized, Two- dimensional Displacement Fields 111

4B.5.1 Simple Shear Displacement Fields 111

4B.5.2 Uniaxial Convergence or Uniaxial Divergence Displacement Fields 113

4B.5.3 Pure Shear Displacement Fields 115

4B.5.4 General Shear Displacement Fields 117

4B.6 Idealized, Three-Dimensional Displacement Fields 117

4B.6.1 Three-Dimensional Simple Shear Displacement Fields 119

4b.6.2 Three-Dimensional Orthogonal Convergence and Divergence Displacement Fields 121

4B.6.3 Pure Shearing Displacement Fields 121

4B.6.4 Constrictional Displacement Fields 122

4B.6.5 Flattening Displacement Fields 123

4B.6.6 Three-Dimensional General Shearing Displacement Fields 124

4B.7 Summary 124

Appendix 4-I: Vectors 124

4-I.1 Simple Mathematical Operations with Vectors 124

4-I.2 Vector Magnitudes 126

4-I.3 Properties of Vector Quantities 126

4-I.4 Relating Magnitude and Orientation to Cartesian Coordinates 127

4-I.5 Vector Products 129

Appendix 4-II: Matrix Operations 130

4-II.1 Defining Matrices 130

4-II.2 Matrix Addition and Subtraction 130

4-II.3 Matrix Multiplication 131

4-II.3.1 Multiplying Two "2 × 2" Matrices 132

4-II.3.2 Multiplying Two "3 × 3" Matrices 132

4-II.3.3 Multiplying a 2 × 2 Matrix Times a 2 × 1 Matrix 133

4-II.3.4 Multiplying a 3 × 3 Matrix Times a 3 × 1 Matrix 133

4-II.3.5 Scalar Multiplication 134

4-II.4 Transpose of a Matrix 134

4-II.5 Determinant of a Square Matrix 135

4-II.6 Inverse of a Square Matrix 135

4-II.7 Rotation Matrices 136

References 137

5 Strain 138

5.1 Overview 138

5.2 Chapter Organization 139

5A Strain: Conceptual Foundation 139

5A.1 Specifying Strain in Deformed Rocks 139

5A.2 One-dimensional Manifestations of Strain 141

5A.2.1 Basic Ideas 141

5A.2.2 Geological Example 142

5A.3 Two-dimensional Manifestations of Strain 143

5A.3.1 Longitudinal Strains in Different Directions 143

5A.3.2 Shear Strain 147

5A.4 Relating Strain to Displacements 151

5A.5 Homogeneous and Inhomogeneous Strain 153

5A.6 Finite Strain Ellipse and Finite Strain Ellipsoid 154

5A.6.1 Finite Strain Ellipse 154

5A.6.2 Finite Strain Ellipsoid 159

5A.7 States of Strain and Strain Paths 163

5A.7.1 States of Strain 163

5A.7.2 Strain Paths and Dated Strain Paths 163

5A.7.3 Coaxial Versus Non-Coaxial Strain Paths 164

5A.8 Instantaneous Strains and Strain Rates 166

5A.9 Infinitesimal Strains 166

5A.10 Summary 167

5A.11 Practical Methods for Measuring Strain 167

5A.11.1 Using Fabrics to Estimate Strain Ellipsoid Shape 167

5A.11.2 Types of Methods for Measuring Strain in Two Dimensions 168

5A.11.3 Measuring Strain in Two Dimensions Using Deformed Markers 169

5B Strain: Comprehensive Treatment 176

5B.4 Relating Strain to Displacements 176

5B.4.1 Longitudinal Strains and Displacement Gradients 177

5B.4.2 Longitudinal Strains and Position Gradients 179

5B.4.3 Relating Displacement Gradients and Position Gradients 179

5B.4.4 Longitudinal Strain in Continuous Deformation 179

5B.4.5 Consequences of Longitudinal Strains 181

5B.4.6 Displacement Gradients and Longitudinal Strains in Different Directions 182

5B.4.7 Position Gradients and Longitudinal Strains in Different Directions 184

5B.4.8 Relating Displacement Gradients and Position Gradients in Two Dimensions 185

5B.4.9 Area Ratios in Two-Dimensional Deformation 186

5B.4.10 Discontinuous Deformation in Two Dimensions 186

5B.4.11 Displacement Gradients and Shear Strains 187

5B.4.12 Shear Strains and Position Gradients 188

5B.4.13 Applying Matrix Algebra to Two-dimensional Deformation 188

5B.4.14 Applying Matrix Algebra to Three-dimensional Deformation 195

5B.5 Homogeneous and Inhomogeneous Deformation 197

5B.5.1 Homogeneous Deformation 197

5B.5.2 Inhomogeneous Deformation 198

5B.6 Finite Strain Ellipse and Finite Strain Ellipsoid 200

5B.6.1 Homogeneous Deformations and the Finite Strain Ellipse 200

5B.6.2 Working with Strain Markers 200

5B.6.3 Finite Strain Ellipsoid 205

5B.7 States of Strain and Strain Paths 205

5B.7.1 States of Strain 205

5B.7.2 Strain Paths 206

5B.7.3 Velocity Gradient Tensor and Decomposition 207

5B.8 Vorticity 210

5B.8.1 Vorticity Vector 211

5B.8.2 Kinematic Vorticity Number 213

5B.9 Summary 213

Appendix 5-I 214

References 216

6 Stress 217

6.1 Overview 217

6A Stress: Conceptual Foundation 218

6A.1 Forces, Tractions, and Stress 220

6A.1.1 Accelerations and the Forces that Act on Objects 220

6A.1.2 Forces Transmitted Through Objects 221

6A.1.3 Traction - A Measure of "Force Intensity" within Objects 221

6A.1.4 Stress 223

6A.2 Characteristics of Stress in Two Dimensions 225

6A.2.1 Normal and Tangential Stress Components 225

6A.2.2 Stresses on Planes with Different Orientations 227

6A.2.3 Principal Stresses and Differential Stress 227

6A.2.4 The Fundamental Stress Equations 231

6A.3 State of Stress in Two Dimensions 233

6A.3.1 The Stress Matrix 233

6A.3.2 The Stress Ellipse 234

6A.3.3 The Mohr circle 235

6A.3.4 Hydrostatic vs. Non-hydrostatic Stress 246

6A.3.5 Homogeneous vs. Inhomogeneous Stress 248

6A.4 Stress in Three Dimensions 248

6A.4.1 The Stress Ellipsoid...

Details
Erscheinungsjahr: 2022
Fachbereich: Geologie
Genre: Geowissenschaften, Importe
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 608 S.
ISBN-13: 9781405106849
ISBN-10: 1405106840
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Wojtal, Steven
Blenkinsop, Tom
Tikoff, Basil
Hersteller: Wiley
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 233 x 186 x 31 mm
Von/Mit: Steven Wojtal (u. a.)
Erscheinungsdatum: 01.08.2022
Gewicht: 1,214 kg
Artikel-ID: 121132794
Über den Autor

Steven Wojtal is Professor of Geoscience at Oberlin College in Oberlin, Ohio, United States.

Tom Blenkinsop is Professor in Earth Science at Cardiff University, United Kingdom.

Basil Tikoff is Professor of Geoscience at the University of Wisconsin-Madison, United States.

Inhaltsverzeichnis

Acknowledgements xvii

Website xix

1 A Framework for Structural Geology 1

1.1 Introduction 1

1.1.1 Deformation 1

1.1.2 Empirical vs. Theoretical Approaches 1

1.1.3 Continuum Mechanics and its Applicability to Structural Geology 6

1.1.4 How to use this Book 6

References 8

2 Structures Produced by Deformation 10

2.1 Geological Structures 10

2.1.1 Structural Fabrics 10

2.1.2 Folds and Boudinage 12

2.1.3 Fractures and Stylolites 15

2.1.4 Faults and Fault Zones 17

2.1.5 Shear Zones 22

2.2 Additional Considerations 25

3 Microstructures 26

3.1 Introduction 26

3.1.1 Overview 26

3.1.2 Framework 27

3.1.3 Imaging of Microstructures 27

3.2 Fractures 28

3.3 Fault Rocks 30

3.4 Overgrowths, Pressure Shadows and Fringes, and Veins 33

3.5 Indenting, Truncating and Interpenetrating Grain Contacts, Strain Caps, and Stylolites 37

3.6 Aligned Grain Boundaries, T Grain Boundaries, and Foam Texture 38

3.7 Undulose Extinction, Subgrains, Deformation and Kink Bands, Deformation Lamellae, Grain Boundary Bulges, and Core-and-Mantle Microstructure 40

3.8 Deformation Twins 43

3.9 Grain Shape Fabrics, Ribbon Grains, and Gneissic Banding 43

3.10 Porphyroblasts 47

3.11 Crystallographic Fabrics (Crystallographic Preferred Orientations) 49

3.12 Shear Sense Indicators, Mylonites, and Porphyroclasts 49

3.12.1 Asymmetric Pressure Shadows and Fringes 53

3.12.2 Foliation Obliquity and Curvature 55

3.12.3 SC, SC¿, and SCC¿ Fabrics 55

3.12.4 Porphyroclast Systems 56

3.12.5 Precautions with Shear Sense Determination 59

3.13 Collecting Oriented Samples and Relating Sample to Geographic Frames of Reference 60

References 65

4 Displacements 66

4.1 Overview 66

4.2 Chapter Organization 66

4A Displacements: Conceptual Foundation 67

4A.1 Specifying Displacements or Individual Particles 67

4A.1.1 Basic Ideas 67

4A.1.2 Geological Example 69

4A.2 Particle Paths and Velocities 70

4A.2.1 Particle Paths 70

4A.2.2 Velocities 71

4A.3 Displacements of Collections of Particles - Displacement Fields 74

4A.3.1 Displacement Fields 74

4A.3.2 Uniform vs. Nonuniform and Distributed vs. Discrete Displacement Fields 76

4A.3.3 Classes of Displacement Fields 77

4A.4 Components of Displacement Fields: Translation, Rotation, and Pure Strain 79

4A.5 Idealized, Two-Dimensional Displacement Fields 85

4A.5.1 Simple Shear 87

4A.5.2 Pure Shear 88

4A.6 Idealized, Three-Dimensional Displacement Fields 89

4A.7 Summary 90

4B Displacements: Comprehensive Treatment 90

4B.1 Specifying Displacements for Individual Particles 90

4B.1.1 Defining Vector Quantities 90

4B.1.2 Types of Vectors 92

4B.1.3 Relating Position and Displacement Vectors 94

4B.1.4 Characterizing Vector Quantities 95

4B.2 Particle Paths and Velocities 97

4B.2.1 Incremental Displacements for Particles 97

4B.2.2 Particle Paths and Movement Histories 98

4b.2.3 Dated Particle Paths, Instantaneous Movement Directions, and Velocities 99

4B.3 Displacements of Collections of Particles - Displacement Fields 101

4B.3.1 Concept of a Displacement Field 101

4B.3.2 Field Quantities 103

4b.3.3 Gradients of the Displacement Field: Discrete and Distributed Deformation 103

4B.3.4 Idealized Versus True Gradients of the Displacement Field 104

4B.4 The Displacement Gradient Tensor - Relating Position and Displacement Vectors 106

4b.4.1 Components of Displacement Fields: Translation, Rotation, and Pure Strain 107

4B.4.2 Translation Displacement Fields 107

4B.4.3 Rigid Rotation Displacement Fields 107

4B.4.4 Pure Strain Displacement Fields 109

4B.4.5 Total Displacement Fields 110

4b.4.6 Using Displacement Gradient Matrices to Represent Displacement Fields 110

4B.5 Idealized, Two- dimensional Displacement Fields 111

4B.5.1 Simple Shear Displacement Fields 111

4B.5.2 Uniaxial Convergence or Uniaxial Divergence Displacement Fields 113

4B.5.3 Pure Shear Displacement Fields 115

4B.5.4 General Shear Displacement Fields 117

4B.6 Idealized, Three-Dimensional Displacement Fields 117

4B.6.1 Three-Dimensional Simple Shear Displacement Fields 119

4b.6.2 Three-Dimensional Orthogonal Convergence and Divergence Displacement Fields 121

4B.6.3 Pure Shearing Displacement Fields 121

4B.6.4 Constrictional Displacement Fields 122

4B.6.5 Flattening Displacement Fields 123

4B.6.6 Three-Dimensional General Shearing Displacement Fields 124

4B.7 Summary 124

Appendix 4-I: Vectors 124

4-I.1 Simple Mathematical Operations with Vectors 124

4-I.2 Vector Magnitudes 126

4-I.3 Properties of Vector Quantities 126

4-I.4 Relating Magnitude and Orientation to Cartesian Coordinates 127

4-I.5 Vector Products 129

Appendix 4-II: Matrix Operations 130

4-II.1 Defining Matrices 130

4-II.2 Matrix Addition and Subtraction 130

4-II.3 Matrix Multiplication 131

4-II.3.1 Multiplying Two "2 × 2" Matrices 132

4-II.3.2 Multiplying Two "3 × 3" Matrices 132

4-II.3.3 Multiplying a 2 × 2 Matrix Times a 2 × 1 Matrix 133

4-II.3.4 Multiplying a 3 × 3 Matrix Times a 3 × 1 Matrix 133

4-II.3.5 Scalar Multiplication 134

4-II.4 Transpose of a Matrix 134

4-II.5 Determinant of a Square Matrix 135

4-II.6 Inverse of a Square Matrix 135

4-II.7 Rotation Matrices 136

References 137

5 Strain 138

5.1 Overview 138

5.2 Chapter Organization 139

5A Strain: Conceptual Foundation 139

5A.1 Specifying Strain in Deformed Rocks 139

5A.2 One-dimensional Manifestations of Strain 141

5A.2.1 Basic Ideas 141

5A.2.2 Geological Example 142

5A.3 Two-dimensional Manifestations of Strain 143

5A.3.1 Longitudinal Strains in Different Directions 143

5A.3.2 Shear Strain 147

5A.4 Relating Strain to Displacements 151

5A.5 Homogeneous and Inhomogeneous Strain 153

5A.6 Finite Strain Ellipse and Finite Strain Ellipsoid 154

5A.6.1 Finite Strain Ellipse 154

5A.6.2 Finite Strain Ellipsoid 159

5A.7 States of Strain and Strain Paths 163

5A.7.1 States of Strain 163

5A.7.2 Strain Paths and Dated Strain Paths 163

5A.7.3 Coaxial Versus Non-Coaxial Strain Paths 164

5A.8 Instantaneous Strains and Strain Rates 166

5A.9 Infinitesimal Strains 166

5A.10 Summary 167

5A.11 Practical Methods for Measuring Strain 167

5A.11.1 Using Fabrics to Estimate Strain Ellipsoid Shape 167

5A.11.2 Types of Methods for Measuring Strain in Two Dimensions 168

5A.11.3 Measuring Strain in Two Dimensions Using Deformed Markers 169

5B Strain: Comprehensive Treatment 176

5B.4 Relating Strain to Displacements 176

5B.4.1 Longitudinal Strains and Displacement Gradients 177

5B.4.2 Longitudinal Strains and Position Gradients 179

5B.4.3 Relating Displacement Gradients and Position Gradients 179

5B.4.4 Longitudinal Strain in Continuous Deformation 179

5B.4.5 Consequences of Longitudinal Strains 181

5B.4.6 Displacement Gradients and Longitudinal Strains in Different Directions 182

5B.4.7 Position Gradients and Longitudinal Strains in Different Directions 184

5B.4.8 Relating Displacement Gradients and Position Gradients in Two Dimensions 185

5B.4.9 Area Ratios in Two-Dimensional Deformation 186

5B.4.10 Discontinuous Deformation in Two Dimensions 186

5B.4.11 Displacement Gradients and Shear Strains 187

5B.4.12 Shear Strains and Position Gradients 188

5B.4.13 Applying Matrix Algebra to Two-dimensional Deformation 188

5B.4.14 Applying Matrix Algebra to Three-dimensional Deformation 195

5B.5 Homogeneous and Inhomogeneous Deformation 197

5B.5.1 Homogeneous Deformation 197

5B.5.2 Inhomogeneous Deformation 198

5B.6 Finite Strain Ellipse and Finite Strain Ellipsoid 200

5B.6.1 Homogeneous Deformations and the Finite Strain Ellipse 200

5B.6.2 Working with Strain Markers 200

5B.6.3 Finite Strain Ellipsoid 205

5B.7 States of Strain and Strain Paths 205

5B.7.1 States of Strain 205

5B.7.2 Strain Paths 206

5B.7.3 Velocity Gradient Tensor and Decomposition 207

5B.8 Vorticity 210

5B.8.1 Vorticity Vector 211

5B.8.2 Kinematic Vorticity Number 213

5B.9 Summary 213

Appendix 5-I 214

References 216

6 Stress 217

6.1 Overview 217

6A Stress: Conceptual Foundation 218

6A.1 Forces, Tractions, and Stress 220

6A.1.1 Accelerations and the Forces that Act on Objects 220

6A.1.2 Forces Transmitted Through Objects 221

6A.1.3 Traction - A Measure of "Force Intensity" within Objects 221

6A.1.4 Stress 223

6A.2 Characteristics of Stress in Two Dimensions 225

6A.2.1 Normal and Tangential Stress Components 225

6A.2.2 Stresses on Planes with Different Orientations 227

6A.2.3 Principal Stresses and Differential Stress 227

6A.2.4 The Fundamental Stress Equations 231

6A.3 State of Stress in Two Dimensions 233

6A.3.1 The Stress Matrix 233

6A.3.2 The Stress Ellipse 234

6A.3.3 The Mohr circle 235

6A.3.4 Hydrostatic vs. Non-hydrostatic Stress 246

6A.3.5 Homogeneous vs. Inhomogeneous Stress 248

6A.4 Stress in Three Dimensions 248

6A.4.1 The Stress Ellipsoid...

Details
Erscheinungsjahr: 2022
Fachbereich: Geologie
Genre: Geowissenschaften, Importe
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 608 S.
ISBN-13: 9781405106849
ISBN-10: 1405106840
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Wojtal, Steven
Blenkinsop, Tom
Tikoff, Basil
Hersteller: Wiley
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 233 x 186 x 31 mm
Von/Mit: Steven Wojtal (u. a.)
Erscheinungsdatum: 01.08.2022
Gewicht: 1,214 kg
Artikel-ID: 121132794
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte