Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
46,60 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
Accessible text covering core functional analysis topics in Hilbert and Banach spaces, with detailed proofs and 200 fully-worked exercises.
Accessible text covering core functional analysis topics in Hilbert and Banach spaces, with detailed proofs and 200 fully-worked exercises.
Über den Autor
James C. Robinson is a professor in the Mathematics Institute at the University of Warwick. He has been the recipient of a Royal Society University Research Fellowship and an Engineering and Physical Sciences Research Council (EPSRC) Leadership Fellowship. He has written six books in addition to his many publications in infinite-dimensional dynamical systems, dimension theory, and partial differential equations.
Inhaltsverzeichnis
Part I. Preliminaries: 1. Vector spaces and bases; 2. Metric spaces; Part II. Normed Linear Spaces: 3. Norms and normed spaces; 4. Complete normed spaces; 5. Finite-dimensional normed spaces; 6. Spaces of continuous functions; 7. Completions and the Lebesgue spaces Lp(¿); Part III. Hilbert Spaces: 8. Hilbert spaces; 9. Orthonormal sets and orthonormal bases for Hilbert spaces; 10. Closest points and approximation; 11. Linear maps between normed spaces; 12. Dual spaces and the Riesz representation theorem; 13. The Hilbert adjoint of a linear operator; 14. The spectrum of a bounded linear operator; 15. Compact linear operators; 16. The Hilbert-Schmidt theorem; 17. Application: Sturm-Liouville problems; Part IV. Banach Spaces: 18. Dual spaces of Banach spaces; 19. The Hahn-Banach theorem; 20. Some applications of the Hahn-Banach theorem; 21. Convex subsets of Banach spaces; 22. The principle of uniform boundedness; 23. The open mapping, inverse mapping, and closed graph theorems; 24. Spectral theory for compact operators; 25. Unbounded operators on Hilbert spaces; 26. Reflexive spaces; 27. Weak and weak-* convergence; Appendix A. Zorn's lemma; Appendix B. Lebesgue integration; Appendix C. The Banach-Alaoglu theorem; Solutions to exercises; References; Index.
Details
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780521728393 |
ISBN-10: | 0521728398 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Robinson, James C. |
Hersteller: | Cambridge University Press |
Maße: | 229 x 152 x 23 mm |
Von/Mit: | James C. Robinson |
Erscheinungsdatum: | 12.03.2020 |
Gewicht: | 0,605 kg |
Über den Autor
James C. Robinson is a professor in the Mathematics Institute at the University of Warwick. He has been the recipient of a Royal Society University Research Fellowship and an Engineering and Physical Sciences Research Council (EPSRC) Leadership Fellowship. He has written six books in addition to his many publications in infinite-dimensional dynamical systems, dimension theory, and partial differential equations.
Inhaltsverzeichnis
Part I. Preliminaries: 1. Vector spaces and bases; 2. Metric spaces; Part II. Normed Linear Spaces: 3. Norms and normed spaces; 4. Complete normed spaces; 5. Finite-dimensional normed spaces; 6. Spaces of continuous functions; 7. Completions and the Lebesgue spaces Lp(¿); Part III. Hilbert Spaces: 8. Hilbert spaces; 9. Orthonormal sets and orthonormal bases for Hilbert spaces; 10. Closest points and approximation; 11. Linear maps between normed spaces; 12. Dual spaces and the Riesz representation theorem; 13. The Hilbert adjoint of a linear operator; 14. The spectrum of a bounded linear operator; 15. Compact linear operators; 16. The Hilbert-Schmidt theorem; 17. Application: Sturm-Liouville problems; Part IV. Banach Spaces: 18. Dual spaces of Banach spaces; 19. The Hahn-Banach theorem; 20. Some applications of the Hahn-Banach theorem; 21. Convex subsets of Banach spaces; 22. The principle of uniform boundedness; 23. The open mapping, inverse mapping, and closed graph theorems; 24. Spectral theory for compact operators; 25. Unbounded operators on Hilbert spaces; 26. Reflexive spaces; 27. Weak and weak-* convergence; Appendix A. Zorn's lemma; Appendix B. Lebesgue integration; Appendix C. The Banach-Alaoglu theorem; Solutions to exercises; References; Index.
Details
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780521728393 |
ISBN-10: | 0521728398 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Robinson, James C. |
Hersteller: | Cambridge University Press |
Maße: | 229 x 152 x 23 mm |
Von/Mit: | James C. Robinson |
Erscheinungsdatum: | 12.03.2020 |
Gewicht: | 0,605 kg |
Warnhinweis