103,95 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R(ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R(ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Gareth James is the John H. Harland Dean of Goizueta Business School at Emory University. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.
Daniela Witten is a professor of statistics and biostatistics, and the Dorothy Gilford Endowed Chair, at University of Washington. Her research focuses largely on statistical machine learning techniques for the analysis of complex, messy, and large-scale data, with an emphasis on unsupervised learning.
Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book with that title. Hastie co-developed much of the statistical modeling software and environment in R, and invented principal curves and surfaces. Tibshirani invented the lasso and is co-author of the very successful book, An Introduction to the Bootstrap. They are both elected members of the US National Academy of Sciences.
Jonathan Taylor is a professor of statistics at Stanford University. His research focuses on selective inference and signal detection in structured noise.
Presents an essential statistical learning toolkit for practitioners in science, industry, and other fields
Demonstrates application of the statistical learning methods in Python
Covers regression, classification, tree methods, SVM, clustering, survival analysis, deep learning
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Springer Texts in Statistics |
Inhalt: |
XV
608 S. 25 s/w Illustr. 575 farbige Illustr. |
ISBN-13: | 9783031387463 |
ISBN-10: | 3031387465 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
James, Gareth
Witten, Daniela Taylor, Jonathan Tibshirani, Robert Hastie, Trevor |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Texts in Statistics |
Maße: | 260 x 183 x 37 mm |
Von/Mit: | Gareth James (u. a.) |
Erscheinungsdatum: | 01.07.2023 |
Gewicht: | 1,494 kg |
Gareth James is the John H. Harland Dean of Goizueta Business School at Emory University. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.
Daniela Witten is a professor of statistics and biostatistics, and the Dorothy Gilford Endowed Chair, at University of Washington. Her research focuses largely on statistical machine learning techniques for the analysis of complex, messy, and large-scale data, with an emphasis on unsupervised learning.
Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book with that title. Hastie co-developed much of the statistical modeling software and environment in R, and invented principal curves and surfaces. Tibshirani invented the lasso and is co-author of the very successful book, An Introduction to the Bootstrap. They are both elected members of the US National Academy of Sciences.
Jonathan Taylor is a professor of statistics at Stanford University. His research focuses on selective inference and signal detection in structured noise.
Presents an essential statistical learning toolkit for practitioners in science, industry, and other fields
Demonstrates application of the statistical learning methods in Python
Covers regression, classification, tree methods, SVM, clustering, survival analysis, deep learning
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Springer Texts in Statistics |
Inhalt: |
XV
608 S. 25 s/w Illustr. 575 farbige Illustr. |
ISBN-13: | 9783031387463 |
ISBN-10: | 3031387465 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
James, Gareth
Witten, Daniela Taylor, Jonathan Tibshirani, Robert Hastie, Trevor |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Texts in Statistics |
Maße: | 260 x 183 x 37 mm |
Von/Mit: | Gareth James (u. a.) |
Erscheinungsdatum: | 01.07.2023 |
Gewicht: | 1,494 kg |