110,00 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
About the editors xiii
Biographies xv
Preface xxi
Introduction xxiii
1. Current healthcare, big data, and machine learning 1
Adam Bohr and Kaveh Memarzadeh
1.1 Current healthcare practice 1
1.2 Value-based treatments and healthcare services 5
1.3 Increasing data volumes in healthcare 10
1.4 Analytics of healthcare data (machine learning and deep learning) 16
1.5 Conclusions/summary 21
References 22
2. The rise of artificial intelligence in healthcare applications 25
Adam Bohr and Kaveh Memarzadeh
2.1 The new age of healthcare 25
2.2 Precision medicine 28
2.3 Artificial intelligence and medical visualization 33
2.4 Intelligent personal health records 38
2.5 Robotics and artificial intelligence-powered devices 43
2.6 Ambient assisted living 46
2.7 The artificial intelligence can see you now 50
References 57
3. Drug discovery and molecular modeling using artificial intelligence 61
Henrik Bohr
3.1 Introduction. The scope of artificial intelligence in drug discovery 61
3.2 Various types of machine learning in artificial intelligence 64
3.3 Molecular modeling and databases in artificial intelligence for drug
molecules 70
3.4 Computational mechanics ML methods in molecular modeling 72
3.5 Drug characterization using isopotential surfaces 74
3.6 Drug design for neuroreceptors using artificial neural network techniques 75
3.7 Specific use of deep learning in drug design 78
3.8 Possible future artificial intelligence development in drug design and
development 80
References 81
4. Applications of artificial intelligence in drug delivery and pharmaceutical development 85
Stefano Colombo
4.1 The evolving pharmaceutical field 85
4.2 Drug delivery and nanotechnology 89
4.3 Quality-by-design R&D 92
4.4 Artificial intelligence in drug delivery modeling 95
4.5 Artificial intelligence application in pharmaceutical product R&D 98
4.6 Landscape of AI implementation in the drug delivery industry 109
4.7 Conclusion: the way forward 110
References 111
5. Cancer diagnostics and treatment decisions using artificial intelligence 117
Reza Mirnezami
5.1 Background 117
5.2 Artificial intelligence, machine learning, and deep learning in cancer 119
5.3 Artificial intelligence to determine cancer susceptibility 122
5.4 Artificial intelligence for enhanced cancer diagnosis and staging 125
5.5 Artificial intelligence to predict cancer treatment response 127
5.6 Artificial intelligence to predict cancer recurrence and survival 130
5.7 Artificial intelligence for personalized cancer pharmacotherapy 133
5.8 How will artificial intelligence affect ethical practices and patients? 136
5.9 Concluding remarks 137
References 139
6. Artificial intelligence for medical imaging 143
Khanhvi Tran, Johan Peter Bøtker, Arash Aframian and Kaveh Memarzadeh
6.1 Introduction 143
6.2 Outputs of artificial intelligence in radiology/medical imaging 144
6.3 Using artificial intelligence in radiology and overcoming its hurdles 146
6.4 X-rays and artificial intelligence in medical imaging-case 1 (Zebra medical
vision) 151
6.5 Ultrasound and artificial intelligence in medical imaging-case 2
(Butterfly iQ) 156
6.6 Application of artificial intelligence in medical imaging-case 3 (Arterys) 158
6.7 Perspectives 160
References 161
7. Medical devices and artificial intelligence 163
Arash Aframian, Farhad Iranpour and Justin Cobb
7.1 Introduction 163
7.2 The development of artificial intelligence in medical devices 163
7.3 Limitations of artificial intelligence
Fachbereich: | EDV |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9780128184387 |
ISBN-10: | 0128184388 |
Sprache: | Englisch |
Herstellernummer: | C2018-0-04097-9 |
Redaktion: |
Bohr, Adam
Memarzadeh, Kaveh |
Hersteller: |
Academic Press
Elsevier Science & Technology |
Maße: | 17 x 152 x 229 mm |
Von/Mit: | Adam Bohr (u. a.) |
Gewicht: | 0,61 kg |
About the editors xiii
Biographies xv
Preface xxi
Introduction xxiii
1. Current healthcare, big data, and machine learning 1
Adam Bohr and Kaveh Memarzadeh
1.1 Current healthcare practice 1
1.2 Value-based treatments and healthcare services 5
1.3 Increasing data volumes in healthcare 10
1.4 Analytics of healthcare data (machine learning and deep learning) 16
1.5 Conclusions/summary 21
References 22
2. The rise of artificial intelligence in healthcare applications 25
Adam Bohr and Kaveh Memarzadeh
2.1 The new age of healthcare 25
2.2 Precision medicine 28
2.3 Artificial intelligence and medical visualization 33
2.4 Intelligent personal health records 38
2.5 Robotics and artificial intelligence-powered devices 43
2.6 Ambient assisted living 46
2.7 The artificial intelligence can see you now 50
References 57
3. Drug discovery and molecular modeling using artificial intelligence 61
Henrik Bohr
3.1 Introduction. The scope of artificial intelligence in drug discovery 61
3.2 Various types of machine learning in artificial intelligence 64
3.3 Molecular modeling and databases in artificial intelligence for drug
molecules 70
3.4 Computational mechanics ML methods in molecular modeling 72
3.5 Drug characterization using isopotential surfaces 74
3.6 Drug design for neuroreceptors using artificial neural network techniques 75
3.7 Specific use of deep learning in drug design 78
3.8 Possible future artificial intelligence development in drug design and
development 80
References 81
4. Applications of artificial intelligence in drug delivery and pharmaceutical development 85
Stefano Colombo
4.1 The evolving pharmaceutical field 85
4.2 Drug delivery and nanotechnology 89
4.3 Quality-by-design R&D 92
4.4 Artificial intelligence in drug delivery modeling 95
4.5 Artificial intelligence application in pharmaceutical product R&D 98
4.6 Landscape of AI implementation in the drug delivery industry 109
4.7 Conclusion: the way forward 110
References 111
5. Cancer diagnostics and treatment decisions using artificial intelligence 117
Reza Mirnezami
5.1 Background 117
5.2 Artificial intelligence, machine learning, and deep learning in cancer 119
5.3 Artificial intelligence to determine cancer susceptibility 122
5.4 Artificial intelligence for enhanced cancer diagnosis and staging 125
5.5 Artificial intelligence to predict cancer treatment response 127
5.6 Artificial intelligence to predict cancer recurrence and survival 130
5.7 Artificial intelligence for personalized cancer pharmacotherapy 133
5.8 How will artificial intelligence affect ethical practices and patients? 136
5.9 Concluding remarks 137
References 139
6. Artificial intelligence for medical imaging 143
Khanhvi Tran, Johan Peter Bøtker, Arash Aframian and Kaveh Memarzadeh
6.1 Introduction 143
6.2 Outputs of artificial intelligence in radiology/medical imaging 144
6.3 Using artificial intelligence in radiology and overcoming its hurdles 146
6.4 X-rays and artificial intelligence in medical imaging-case 1 (Zebra medical
vision) 151
6.5 Ultrasound and artificial intelligence in medical imaging-case 2
(Butterfly iQ) 156
6.6 Application of artificial intelligence in medical imaging-case 3 (Arterys) 158
6.7 Perspectives 160
References 161
7. Medical devices and artificial intelligence 163
Arash Aframian, Farhad Iranpour and Justin Cobb
7.1 Introduction 163
7.2 The development of artificial intelligence in medical devices 163
7.3 Limitations of artificial intelligence
Fachbereich: | EDV |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9780128184387 |
ISBN-10: | 0128184388 |
Sprache: | Englisch |
Herstellernummer: | C2018-0-04097-9 |
Redaktion: |
Bohr, Adam
Memarzadeh, Kaveh |
Hersteller: |
Academic Press
Elsevier Science & Technology |
Maße: | 17 x 152 x 229 mm |
Von/Mit: | Adam Bohr (u. a.) |
Gewicht: | 0,61 kg |