Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Bayesian Hierarchical Models
With Applications Using R, Second Edition
Taschenbuch von Peter D. Congdon
Sprache: Englisch

56,80 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Kategorien:
Beschreibung
An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.

The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.

The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.

Features:

Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling

Includes many real data examples to illustrate different modelling topics

R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation

Software options and coding principles are introduced in new chapter on computing

Programs and data sets available on the book's website
An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.

The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.

The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.

Features:

Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling

Includes many real data examples to illustrate different modelling topics

R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation

Software options and coding principles are introduced in new chapter on computing

Programs and data sets available on the book's website
Über den Autor

Peter Congdon is Research Professor in Quantitative Geography and Health Statistics at Queen Mary, University of London.

Inhaltsverzeichnis

Contents

Preface

1. Bayesian Methods for Complex Data: Estimation and Inference

2. Bayesian Analysis Options in R, and Coding for BUGS, JAGS, and Stan

3. Model Fit, Comparison, and Checking

4. Borrowing Strength via Hierarchical Estimation

5. Time Structured Priors

6. Representing Spatial Dependence

7. Regression Techniques Using Hierarchical Priors

8. Bayesian Multilevel Models

9. Factor Analysis, Structural Equation Models, and Multivariate Priors

10. Hierarchical Models for Longitudinal Data

11. Survival and Event History Models

12. Hierarchical Methods for Nonlinear and Quantile Regression

Details
Erscheinungsjahr: 2021
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781032177151
ISBN-10: 1032177152
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Congdon, Peter D.
Auflage: 2. Auflage
Hersteller: Chapman and Hall/CRC
Maße: 254 x 178 x 32 mm
Von/Mit: Peter D. Congdon
Erscheinungsdatum: 30.09.2021
Gewicht: 1,101 kg
Artikel-ID: 121356799
Über den Autor

Peter Congdon is Research Professor in Quantitative Geography and Health Statistics at Queen Mary, University of London.

Inhaltsverzeichnis

Contents

Preface

1. Bayesian Methods for Complex Data: Estimation and Inference

2. Bayesian Analysis Options in R, and Coding for BUGS, JAGS, and Stan

3. Model Fit, Comparison, and Checking

4. Borrowing Strength via Hierarchical Estimation

5. Time Structured Priors

6. Representing Spatial Dependence

7. Regression Techniques Using Hierarchical Priors

8. Bayesian Multilevel Models

9. Factor Analysis, Structural Equation Models, and Multivariate Priors

10. Hierarchical Models for Longitudinal Data

11. Survival and Event History Models

12. Hierarchical Methods for Nonlinear and Quantile Regression

Details
Erscheinungsjahr: 2021
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781032177151
ISBN-10: 1032177152
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Congdon, Peter D.
Auflage: 2. Auflage
Hersteller: Chapman and Hall/CRC
Maße: 254 x 178 x 32 mm
Von/Mit: Peter D. Congdon
Erscheinungsdatum: 30.09.2021
Gewicht: 1,101 kg
Artikel-ID: 121356799
Warnhinweis