Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Bayesian Statistical Modeling with Stan, R, and Python
Buch von Kentaro Matsuura
Sprache: Englisch

150,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.
The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.
Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.
This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.
The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.
Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.
Über den Autor
Kentaro Matsuura
Zusammenfassung

Provides a highly practical introduction to Bayesian statistical modeling with Stan, illustrating key concepts

Covers topics essential for mastering modeling, including hierarchical models

Presents full explanations of code and formulas, enabling readers to extend models for their own problems

Inhaltsverzeichnis
Introduction.- Introduction of Stan.- Essential Components and Techniques for Experts.- Advanced Topics for Real-world Data.
Details
Erscheinungsjahr: 2023
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xix
385 S.
251 s/w Illustr.
10 farbige Illustr.
385 p. 261 illus.
10 illus. in color.
ISBN-13: 9789811947544
ISBN-10: 9811947546
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Matsuura, Kentaro
Auflage: 1st ed. 2022
Hersteller: Springer Singapore
Springer Nature Singapore
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 26 mm
Von/Mit: Kentaro Matsuura
Erscheinungsdatum: 25.01.2023
Gewicht: 0,85 kg
Artikel-ID: 122012585
Über den Autor
Kentaro Matsuura
Zusammenfassung

Provides a highly practical introduction to Bayesian statistical modeling with Stan, illustrating key concepts

Covers topics essential for mastering modeling, including hierarchical models

Presents full explanations of code and formulas, enabling readers to extend models for their own problems

Inhaltsverzeichnis
Introduction.- Introduction of Stan.- Essential Components and Techniques for Experts.- Advanced Topics for Real-world Data.
Details
Erscheinungsjahr: 2023
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xix
385 S.
251 s/w Illustr.
10 farbige Illustr.
385 p. 261 illus.
10 illus. in color.
ISBN-13: 9789811947544
ISBN-10: 9811947546
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Matsuura, Kentaro
Auflage: 1st ed. 2022
Hersteller: Springer Singapore
Springer Nature Singapore
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 26 mm
Von/Mit: Kentaro Matsuura
Erscheinungsdatum: 25.01.2023
Gewicht: 0,85 kg
Artikel-ID: 122012585
Sicherheitshinweis