Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Boundary Stabilization of Parabolic Equations
Buch von Ionu¿ Munteanu
Sprache: Englisch

106,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling.
The text provides answers to the following problems, which are of great practical importance:
Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state

Designing observers for the considered control systems

Constructing time-discrete controllers requiring only partial knowledge of the state
After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more.
Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required.
This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling.
The text provides answers to the following problems, which are of great practical importance:
Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state

Designing observers for the considered control systems

Constructing time-discrete controllers requiring only partial knowledge of the state
After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more.
Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required.
Zusammenfassung

Describes a new technique of stabilizing parabolic type equations

Discusses numerous applications for the control techniques presented

Will be an indispensable tool for researchers in control theory and engineers from all fields

Inhaltsverzeichnis
Preliminaries.- Stabilization of Abstract Parabolic Equations.- Stabilization of Periodic Flows in a Channel.- Stabilization of the Magnetohydrodynamics Equations in a Channel.- Stabilization of the Cahn-Hilliard System.- Stabilization of Equations with Delays.- Stabilization of Stochastic Equations.- Stabilization of Nonsteady States.- Internal Stabilization of Abstract Parabolic Systems.
Details
Erscheinungsjahr: 2019
Fachbereich: Allgemeines
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: PNLDE Subseries in Control
Inhalt: xii
214 S.
5 s/w Illustr.
3 farbige Illustr.
214 p. 8 illus.
3 illus. in color.
ISBN-13: 9783030110987
ISBN-10: 3030110982
Sprache: Englisch
Herstellernummer: 978-3-030-11098-7
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Munteanu, Ionu¿
Auflage: 1st ed. 2019
Hersteller: Springer International Publishing
PNLDE Subseries in Control
Maße: 241 x 160 x 18 mm
Von/Mit: Ionu¿ Munteanu
Erscheinungsdatum: 01.03.2019
Gewicht: 0,512 kg
Artikel-ID: 115055034
Zusammenfassung

Describes a new technique of stabilizing parabolic type equations

Discusses numerous applications for the control techniques presented

Will be an indispensable tool for researchers in control theory and engineers from all fields

Inhaltsverzeichnis
Preliminaries.- Stabilization of Abstract Parabolic Equations.- Stabilization of Periodic Flows in a Channel.- Stabilization of the Magnetohydrodynamics Equations in a Channel.- Stabilization of the Cahn-Hilliard System.- Stabilization of Equations with Delays.- Stabilization of Stochastic Equations.- Stabilization of Nonsteady States.- Internal Stabilization of Abstract Parabolic Systems.
Details
Erscheinungsjahr: 2019
Fachbereich: Allgemeines
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: PNLDE Subseries in Control
Inhalt: xii
214 S.
5 s/w Illustr.
3 farbige Illustr.
214 p. 8 illus.
3 illus. in color.
ISBN-13: 9783030110987
ISBN-10: 3030110982
Sprache: Englisch
Herstellernummer: 978-3-030-11098-7
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Munteanu, Ionu¿
Auflage: 1st ed. 2019
Hersteller: Springer International Publishing
PNLDE Subseries in Control
Maße: 241 x 160 x 18 mm
Von/Mit: Ionu¿ Munteanu
Erscheinungsdatum: 01.03.2019
Gewicht: 0,512 kg
Artikel-ID: 115055034
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte