Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Colloidal Quantum Dot Light Emitting Diodes
Materials and Devices
Buch von Hong Meng
Sprache: Englisch

121,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung

Explore all the core components for the commercialization of quantum dot light emitting diodes

Quantum dot light emitting diodes (QDLEDs) are a technology with the potential to revolutionize solid-state lighting and displays. Due to the many applications of semiconductor nanocrystals, of which QDLEDs are an example, they also hold the potential to be adapted into other emerging semiconducting technologies. As a result, it is critical that the next generation of engineers and materials scientists understand these diodes and their latest developments.

Colloidal Quantum Dot Light Emitting Diodes: Materials and Devices offers a comprehensive introduction to this subject and its most recent research advancements. Beginning with a summary of the theoretical foundations and the basic methods for chemically synthesizing colloidal semiconductor quantum dots, it identifies existing and future applications for these groundbreaking technologies. The result is tailored to produce a thorough understanding of this area of research.

Colloidal Quantum Dot Light Emitting Diodes readers will also find:

  • An author with decades of experience in the field of organic electronics
  • Detailed discussion of topics including advanced display technologies, the patent portfolio and commercial considerations, and more
  • Strategies and design techniques for improving device performance

Colloidal Quantum Dot Light Emitting Diodes is ideal for material scientists, electronics engineers, inorganic and solid-state chemists, solid-state and semiconductor physicists, photochemists, and surface chemists, as well as the libraries that support these professionals.

Explore all the core components for the commercialization of quantum dot light emitting diodes

Quantum dot light emitting diodes (QDLEDs) are a technology with the potential to revolutionize solid-state lighting and displays. Due to the many applications of semiconductor nanocrystals, of which QDLEDs are an example, they also hold the potential to be adapted into other emerging semiconducting technologies. As a result, it is critical that the next generation of engineers and materials scientists understand these diodes and their latest developments.

Colloidal Quantum Dot Light Emitting Diodes: Materials and Devices offers a comprehensive introduction to this subject and its most recent research advancements. Beginning with a summary of the theoretical foundations and the basic methods for chemically synthesizing colloidal semiconductor quantum dots, it identifies existing and future applications for these groundbreaking technologies. The result is tailored to produce a thorough understanding of this area of research.

Colloidal Quantum Dot Light Emitting Diodes readers will also find:

  • An author with decades of experience in the field of organic electronics
  • Detailed discussion of topics including advanced display technologies, the patent portfolio and commercial considerations, and more
  • Strategies and design techniques for improving device performance

Colloidal Quantum Dot Light Emitting Diodes is ideal for material scientists, electronics engineers, inorganic and solid-state chemists, solid-state and semiconductor physicists, photochemists, and surface chemists, as well as the libraries that support these professionals.

Über den Autor
Prof. Hong Meng received his Ph.D. from University of California Los Angeles (UCLA) in 2002. He has been working in the field of organic electronics for more than 20 years. His career experiences including working at the Institute of Materials Science and Engineering (IMRE) in Singapore, Lucent Technologies Bell Labs, DuPont Experimental Station. In 2014, he moved to School of Advanced Materials Peking University Shenzhen Graduate School, China. He has contributed over 120 peer-reviewed papers (citation: 6000) in chemistry and materials science fields, filed over 46 US patents, 50 Chinese patents.
Inhaltsverzeichnis
HISTORY AND INTRODUCTION OF QDS AND QDLEDS
1.1 Preparation Route of Quantum Dots
1.2 Light-Emitting Characteristics of Quantum Dots
1.3 Application of Quantum Dots on Display Devices
1.4 Conclusion and Remarks
References
Chapter 2 COLLOIDAL SEMICONDUCTOR QUANTUM DOT LED STRUCTURE AND PRINCIPLES
2.1 Basic Concepts
2.2 Colloidal Quantum Dot Light-Emitting Devices
References
SYNTHESIS AND CHARACTERIZATION OF COLLOIDAL SEMICONDUCTOR QUANTUM DOT MATERIALS
3.1 Background
3.2 Synthesis and Post-Processing of Colloidal Quantum Dots
3.3 Material Characterization
3.4 Conclusion and Outlook
References
RED QUANTUM DOT LIGHT EMITTING DIODES
4.1 Background
4.2 Red Light Quantum Dot Materials
4.3 Red QDLED Devices
4.4 Conclusion and Outlook
References
GREEN QUANTUM DOT LED MATERIALS AND DEVICES
5.1 Background
5.2 Commonly Used Luminescent Layer Materials in Green QDLEDs
5.3 Development of Device Structures for Green QDLEDs
5.4 Factors Affecting the Performance of Green QDLEDs
5.5 Summary and Outlook
Reference
BLUE QUANTUM DOT LIGHT EMITTING DIODES
6.1 Introduction
6.2 Blue Quantum Dot Luminescent Materials
6.3 Optimization of Charge Transport Layer (CTLs)
6.4 Device Structure
6.5 Summary
Reference
Chapter 7 NEAR-INFRARED QUANTUM DOTS QDLED
7.1 Introduction of Near Infrared Quantum Dots
7.2 Near Infrared Quantum Dot Materials
7.3 Optimization of Near Infrared Quantum Dot Materials
7.4 Summary and prospect
References
WHITE QDLED
8.1 Generation of White Light
8.2 Quantum Dots for White LEDs
8.3 Summary Outlook
References
NON-CADMIUM QUANTUM DOT LIGHT-EMITTING MATERIALS AND DEVICES
9.1 Introduction
9.2 Quantum Dots and QDLED
9.3 Methods for Optimizing QDLED Performance
9.4 Summary and Outlook
References
AC-DRIVEN QUANTUM DOT LIGHT-EMITTING DIODES
10.1 Principle of Luminescence of DC and AC Driven QDLEDs
10.2 Mechanism of Double-Emission Tandem Structure of AC QDLEDs
10.3 Optimization Strategies for AC QDLEDs
10.4 Conclusion and Future Direction of AC-QDLED
References
STABILITY STUDY AND DECAY MECHANISM OF QUANTUM DOT LIGHT EMITTING DIODES
11.1 Quantum Dot Light-Emitting Diode Stability Research Status
11.2 Factors Affecting the Stability of Quantum Dot Light-Emitting Diodes
11.3 Quantum Dot Light-Emitting Diode Efficiency Decay Mechanism
11.4 Ageing Mechanisms of QDLEDs
11.5 Characterization Technologies for QDLEDs
11.6 Outlook
References
ELECTRON/HOLE INJECTION AND TRANSPORT MATERIALS IN QUANTUM DOT LIGHT EMITTING DIODES
12.1 Introduction
12.2 Charge-Transport Mechanisms
12.3 Electron Transport Materials (ETMs) for QDLED
12.4 Electron Injection Materials for QDLED
12.5 Hole Transport Materials for QDLED
12.6 Hole Injection Materials for QDLED
12.7 Summary and outlook
References
QUANTUM DOT INDUSTRIAL DEVELOPMENT AND PATENT LAYOUT
13.1 Introduction
13.2 Patent Layout
13.3 Summary and outlook
References
Patterning Techniques for Quantum Dot Light-Emitting Diodes (QDLED)
14.1 Introduction
14.2 Photolithography
14.3 Micro-Contact Transfer
14.4 Inkjet Printing
14.5 Other Patterning Techniques
14.6 Conclusion
Reference
Details
Erscheinungsjahr: 2023
Fachbereich: Populäre Darstellungen
Genre: Chemie, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 400 S.
ISBN-13: 9783527353279
ISBN-10: 3527353275
Sprache: Englisch
Herstellernummer: 1135327 000
Einband: Gebunden
Autor: Meng, Hong
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 247 x 173 x 24 mm
Von/Mit: Hong Meng
Erscheinungsdatum: 01.11.2023
Gewicht: 0,908 kg
Artikel-ID: 127271311
Über den Autor
Prof. Hong Meng received his Ph.D. from University of California Los Angeles (UCLA) in 2002. He has been working in the field of organic electronics for more than 20 years. His career experiences including working at the Institute of Materials Science and Engineering (IMRE) in Singapore, Lucent Technologies Bell Labs, DuPont Experimental Station. In 2014, he moved to School of Advanced Materials Peking University Shenzhen Graduate School, China. He has contributed over 120 peer-reviewed papers (citation: 6000) in chemistry and materials science fields, filed over 46 US patents, 50 Chinese patents.
Inhaltsverzeichnis
HISTORY AND INTRODUCTION OF QDS AND QDLEDS
1.1 Preparation Route of Quantum Dots
1.2 Light-Emitting Characteristics of Quantum Dots
1.3 Application of Quantum Dots on Display Devices
1.4 Conclusion and Remarks
References
Chapter 2 COLLOIDAL SEMICONDUCTOR QUANTUM DOT LED STRUCTURE AND PRINCIPLES
2.1 Basic Concepts
2.2 Colloidal Quantum Dot Light-Emitting Devices
References
SYNTHESIS AND CHARACTERIZATION OF COLLOIDAL SEMICONDUCTOR QUANTUM DOT MATERIALS
3.1 Background
3.2 Synthesis and Post-Processing of Colloidal Quantum Dots
3.3 Material Characterization
3.4 Conclusion and Outlook
References
RED QUANTUM DOT LIGHT EMITTING DIODES
4.1 Background
4.2 Red Light Quantum Dot Materials
4.3 Red QDLED Devices
4.4 Conclusion and Outlook
References
GREEN QUANTUM DOT LED MATERIALS AND DEVICES
5.1 Background
5.2 Commonly Used Luminescent Layer Materials in Green QDLEDs
5.3 Development of Device Structures for Green QDLEDs
5.4 Factors Affecting the Performance of Green QDLEDs
5.5 Summary and Outlook
Reference
BLUE QUANTUM DOT LIGHT EMITTING DIODES
6.1 Introduction
6.2 Blue Quantum Dot Luminescent Materials
6.3 Optimization of Charge Transport Layer (CTLs)
6.4 Device Structure
6.5 Summary
Reference
Chapter 7 NEAR-INFRARED QUANTUM DOTS QDLED
7.1 Introduction of Near Infrared Quantum Dots
7.2 Near Infrared Quantum Dot Materials
7.3 Optimization of Near Infrared Quantum Dot Materials
7.4 Summary and prospect
References
WHITE QDLED
8.1 Generation of White Light
8.2 Quantum Dots for White LEDs
8.3 Summary Outlook
References
NON-CADMIUM QUANTUM DOT LIGHT-EMITTING MATERIALS AND DEVICES
9.1 Introduction
9.2 Quantum Dots and QDLED
9.3 Methods for Optimizing QDLED Performance
9.4 Summary and Outlook
References
AC-DRIVEN QUANTUM DOT LIGHT-EMITTING DIODES
10.1 Principle of Luminescence of DC and AC Driven QDLEDs
10.2 Mechanism of Double-Emission Tandem Structure of AC QDLEDs
10.3 Optimization Strategies for AC QDLEDs
10.4 Conclusion and Future Direction of AC-QDLED
References
STABILITY STUDY AND DECAY MECHANISM OF QUANTUM DOT LIGHT EMITTING DIODES
11.1 Quantum Dot Light-Emitting Diode Stability Research Status
11.2 Factors Affecting the Stability of Quantum Dot Light-Emitting Diodes
11.3 Quantum Dot Light-Emitting Diode Efficiency Decay Mechanism
11.4 Ageing Mechanisms of QDLEDs
11.5 Characterization Technologies for QDLEDs
11.6 Outlook
References
ELECTRON/HOLE INJECTION AND TRANSPORT MATERIALS IN QUANTUM DOT LIGHT EMITTING DIODES
12.1 Introduction
12.2 Charge-Transport Mechanisms
12.3 Electron Transport Materials (ETMs) for QDLED
12.4 Electron Injection Materials for QDLED
12.5 Hole Transport Materials for QDLED
12.6 Hole Injection Materials for QDLED
12.7 Summary and outlook
References
QUANTUM DOT INDUSTRIAL DEVELOPMENT AND PATENT LAYOUT
13.1 Introduction
13.2 Patent Layout
13.3 Summary and outlook
References
Patterning Techniques for Quantum Dot Light-Emitting Diodes (QDLED)
14.1 Introduction
14.2 Photolithography
14.3 Micro-Contact Transfer
14.4 Inkjet Printing
14.5 Other Patterning Techniques
14.6 Conclusion
Reference
Details
Erscheinungsjahr: 2023
Fachbereich: Populäre Darstellungen
Genre: Chemie, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 400 S.
ISBN-13: 9783527353279
ISBN-10: 3527353275
Sprache: Englisch
Herstellernummer: 1135327 000
Einband: Gebunden
Autor: Meng, Hong
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 247 x 173 x 24 mm
Von/Mit: Hong Meng
Erscheinungsdatum: 01.11.2023
Gewicht: 0,908 kg
Artikel-ID: 127271311
Sicherheitshinweis