Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
111,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry.
This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading.
This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading.
In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry.
This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading.
This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading.
Über den Autor
John von Neumann (1903-1957) was a Permanent Member of the Institute for Advanced Study in Princeton.
Details
Erscheinungsjahr: | 1998 |
---|---|
Fachbereich: | Geometrie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780691058931 |
ISBN-10: | 0691058938 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Neumann, John Von |
Hersteller: | Princeton University Press |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 234 x 156 x 17 mm |
Von/Mit: | John Von Neumann |
Erscheinungsdatum: | 10.05.1998 |
Gewicht: | 0,483 kg |
Über den Autor
John von Neumann (1903-1957) was a Permanent Member of the Institute for Advanced Study in Princeton.
Details
Erscheinungsjahr: | 1998 |
---|---|
Fachbereich: | Geometrie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780691058931 |
ISBN-10: | 0691058938 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Neumann, John Von |
Hersteller: | Princeton University Press |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 234 x 156 x 17 mm |
Von/Mit: | John Von Neumann |
Erscheinungsdatum: | 10.05.1998 |
Gewicht: | 0,483 kg |
Sicherheitshinweis