Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Continuous Machine Learning with Kubeflow
Performing Reliable MLOps with Capabilities of TFX, Sagemaker and Kubernetes (English Edition)
Taschenbuch von Aniruddha Choudhury
Sprache: Englisch

44,00 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
An insightful journey to MLOps, DevOps, and Machine Learning in the real environment.

KEY FEATURES
¿ Extensive knowledge and concept explanation of Kubernetes components with examples.
¿ An all-in-one knowledge guide to train and deploy ML pipelines using Docker and Kubernetes.
¿ Includes numerous MLOps projects with access to proven frameworks and the use of deep learning concepts.

DESCRIPTION
'Continuous Machine Learning with Kubeflow' introduces you to the modern machine learning infrastructure, which includes Kubernetes and the Kubeflow architecture. This book will explain the fundamentals of deploying various AI/ML use cases with TensorFlow training and serving with Kubernetes and how Kubernetes can help with specific projects from start to finish.

This book will help demonstrate how to use Kubeflow components, deploy them in GCP, and serve them in production using real-time data prediction. With Kubeflow KFserving, we'll look at serving techniques, build a computer vision-based user interface in streamlit, and then deploy it to the Google cloud platforms, Kubernetes and Heroku. Next, we also explore how to build Explainable AI for determining fairness and biasness with a What-if tool. Backed with various use-cases, we will learn how to put machine learning into production, including training and serving.

WHAT YOU WILL LEARN
¿ Get comfortable with the architecture and the orchestration of Kubernetes.
¿ Learn to containerize and deploy from scratch using Docker and Google Cloud Platform.
¿ Practice how to develop the Kubeflow Orchestrator pipeline for a TensorFlow model.
¿ Create AWS SageMaker pipelines, right from training to deployment in production.
¿ Build the TensorFlow Extended (TFX) pipeline for an NLP application using Tensorboard and TFMA.

WHO THIS BOOK IS FOR
This book is for MLOps, DevOps, Machine Learning Engineers, and Data Scientists who want to continuously deploy machine learning pipelines and manage them at scale using Kubernetes. The readers should have a strong background in machine learning and some knowledge of Kubernetes is required.
An insightful journey to MLOps, DevOps, and Machine Learning in the real environment.

KEY FEATURES
¿ Extensive knowledge and concept explanation of Kubernetes components with examples.
¿ An all-in-one knowledge guide to train and deploy ML pipelines using Docker and Kubernetes.
¿ Includes numerous MLOps projects with access to proven frameworks and the use of deep learning concepts.

DESCRIPTION
'Continuous Machine Learning with Kubeflow' introduces you to the modern machine learning infrastructure, which includes Kubernetes and the Kubeflow architecture. This book will explain the fundamentals of deploying various AI/ML use cases with TensorFlow training and serving with Kubernetes and how Kubernetes can help with specific projects from start to finish.

This book will help demonstrate how to use Kubeflow components, deploy them in GCP, and serve them in production using real-time data prediction. With Kubeflow KFserving, we'll look at serving techniques, build a computer vision-based user interface in streamlit, and then deploy it to the Google cloud platforms, Kubernetes and Heroku. Next, we also explore how to build Explainable AI for determining fairness and biasness with a What-if tool. Backed with various use-cases, we will learn how to put machine learning into production, including training and serving.

WHAT YOU WILL LEARN
¿ Get comfortable with the architecture and the orchestration of Kubernetes.
¿ Learn to containerize and deploy from scratch using Docker and Google Cloud Platform.
¿ Practice how to develop the Kubeflow Orchestrator pipeline for a TensorFlow model.
¿ Create AWS SageMaker pipelines, right from training to deployment in production.
¿ Build the TensorFlow Extended (TFX) pipeline for an NLP application using Tensorboard and TFMA.

WHO THIS BOOK IS FOR
This book is for MLOps, DevOps, Machine Learning Engineers, and Data Scientists who want to continuously deploy machine learning pipelines and manage them at scale using Kubernetes. The readers should have a strong background in machine learning and some knowledge of Kubernetes is required.
Details
Erscheinungsjahr: 2021
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9789389898507
ISBN-10: 9389898501
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Choudhury, Aniruddha
Hersteller: BPB Publications
Maße: 235 x 191 x 18 mm
Von/Mit: Aniruddha Choudhury
Erscheinungsdatum: 20.11.2021
Gewicht: 0,618 kg
Artikel-ID: 120852240
Details
Erscheinungsjahr: 2021
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9789389898507
ISBN-10: 9389898501
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Choudhury, Aniruddha
Hersteller: BPB Publications
Maße: 235 x 191 x 18 mm
Von/Mit: Aniruddha Choudhury
Erscheinungsdatum: 20.11.2021
Gewicht: 0,618 kg
Artikel-ID: 120852240
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte