Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Convex and Stochastic Optimization
Taschenbuch von J. Frédéric Bonnans
Sprache: Englisch

58,40 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Kategorien:
Beschreibung
This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with.

The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules.

This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.
This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with.

The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules.

This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.
Über den Autor

J.F. Bonnans is an expert in convex analysis and dynamic optimization, both in the deterministic and stochastic setting. His main contributions deal with the sensitivity analysis of optimization problems, high order optimality conditions, optimal control and stochastic control. He worked on quantization methods for stochastic programming problems, on the approximate dynamic programming for problems with monotone value function, and on sparse linear regression.

Zusammenfassung

Provides a pedagogical, self-contained analysis of the theory of convex optimization and stochastic programming

Offers a synthetical view of many applications such as semidefinite programming, Markov processes, generalized convexity and optimal transport

Includes a study of algorithmic aspects: dynamic programming, stochastic dual dynamic programming (in the case of convex Bellman value functions) and linear decision rules

Inhaltsverzeichnis
1 A convex optimization toolbox.- 2 Semide¿nite and semiin¿nite programming.- 3 An integration toolbox.- 4 Risk measures.- 5 Sampling and optimizing.- 6 Dynamic stochastic optimization.- 7 Markov decision processes.- 8 Algorithms.- 9 Generalized convexity and transportation theory.- References.- Index.
Details
Erscheinungsjahr: 2019
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiii
311 S.
ISBN-13: 9783030149765
ISBN-10: 3030149765
Sprache: Englisch
Herstellernummer: 978-3-030-14976-5
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Bonnans, J. Frédéric
Auflage: 1st ed. 2019
Hersteller: Springer International Publishing
Springer International Publishing AG
Universitext
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 17 mm
Von/Mit: J. Frédéric Bonnans
Erscheinungsdatum: 29.04.2019
Gewicht: 0,568 kg
Artikel-ID: 115367762
Über den Autor

J.F. Bonnans is an expert in convex analysis and dynamic optimization, both in the deterministic and stochastic setting. His main contributions deal with the sensitivity analysis of optimization problems, high order optimality conditions, optimal control and stochastic control. He worked on quantization methods for stochastic programming problems, on the approximate dynamic programming for problems with monotone value function, and on sparse linear regression.

Zusammenfassung

Provides a pedagogical, self-contained analysis of the theory of convex optimization and stochastic programming

Offers a synthetical view of many applications such as semidefinite programming, Markov processes, generalized convexity and optimal transport

Includes a study of algorithmic aspects: dynamic programming, stochastic dual dynamic programming (in the case of convex Bellman value functions) and linear decision rules

Inhaltsverzeichnis
1 A convex optimization toolbox.- 2 Semide¿nite and semiin¿nite programming.- 3 An integration toolbox.- 4 Risk measures.- 5 Sampling and optimizing.- 6 Dynamic stochastic optimization.- 7 Markov decision processes.- 8 Algorithms.- 9 Generalized convexity and transportation theory.- References.- Index.
Details
Erscheinungsjahr: 2019
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiii
311 S.
ISBN-13: 9783030149765
ISBN-10: 3030149765
Sprache: Englisch
Herstellernummer: 978-3-030-14976-5
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Bonnans, J. Frédéric
Auflage: 1st ed. 2019
Hersteller: Springer International Publishing
Springer International Publishing AG
Universitext
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 17 mm
Von/Mit: J. Frédéric Bonnans
Erscheinungsdatum: 29.04.2019
Gewicht: 0,568 kg
Artikel-ID: 115367762
Sicherheitshinweis