33,45 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent.
Apply in-depth linear algebra with PyTorch
Explore PyTorch fundamentals andits building blocks
Work with tuning and optimizing models
Who This Book Is For
Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent.
Apply in-depth linear algebra with PyTorch
Explore PyTorch fundamentals andits building blocks
Work with tuning and optimizing models
Who This Book Is For
Offers a sound theoretical/mathematical foundation and practical programming techniques using PyTorch
Covers deep learning with multiple GPUs and optimizing deep learning models
Reviews best practices of taking deep learning models to production with PyTorch
Chapter 1 - Introduction Deep Learning.- Chapter 2 - Introduction to PyTorch.- Chapter 3- Feed Forward Networks.- Chapter 4 - Automatic Differentiation in Deep Learning.- Chapter 5 - Training Deep Neural Networks.- Chapter 6 - Convolutional Neural Networks.- Chapter 7 - Recurrent Neural Networks.- Chapter 8 - Recent advances in Deep Learning.
Erscheinungsjahr: | 2021 |
---|---|
Fachbereich: | Programmiersprachen |
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xvii
306 S. 82 s/w Illustr. 306 p. 82 illus. |
ISBN-13: | 9781484253632 |
ISBN-10: | 1484253639 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Moolayil, Jojo
Ketkar, Nikhil |
Auflage: | 2nd edition |
Hersteller: | APRESS |
Verantwortliche Person für die EU: | APress in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 18 mm |
Von/Mit: | Jojo Moolayil (u. a.) |
Erscheinungsdatum: | 10.04.2021 |
Gewicht: | 0,493 kg |
Offers a sound theoretical/mathematical foundation and practical programming techniques using PyTorch
Covers deep learning with multiple GPUs and optimizing deep learning models
Reviews best practices of taking deep learning models to production with PyTorch
Chapter 1 - Introduction Deep Learning.- Chapter 2 - Introduction to PyTorch.- Chapter 3- Feed Forward Networks.- Chapter 4 - Automatic Differentiation in Deep Learning.- Chapter 5 - Training Deep Neural Networks.- Chapter 6 - Convolutional Neural Networks.- Chapter 7 - Recurrent Neural Networks.- Chapter 8 - Recent advances in Deep Learning.
Erscheinungsjahr: | 2021 |
---|---|
Fachbereich: | Programmiersprachen |
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xvii
306 S. 82 s/w Illustr. 306 p. 82 illus. |
ISBN-13: | 9781484253632 |
ISBN-10: | 1484253639 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Moolayil, Jojo
Ketkar, Nikhil |
Auflage: | 2nd edition |
Hersteller: | APRESS |
Verantwortliche Person für die EU: | APress in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 18 mm |
Von/Mit: | Jojo Moolayil (u. a.) |
Erscheinungsdatum: | 10.04.2021 |
Gewicht: | 0,493 kg |