Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
55,80 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.
This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.
Über den Autor
Masashi Sugiyama is an Associate Professor in the Department of Computer Science at the Tokyo Institute of Technology.
Inhaltsverzeichnis
Part I. Density Ratio Approach to Machine Learning: 1. Introduction; Part II. Methods of Density Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction; Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation; Part IV. Theoretical Analysis of Density Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis; Part V. Conclusions: 17. Conclusions and future directions.
Details
Erscheinungsjahr: | 2018 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781108461733 |
ISBN-10: | 1108461735 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Sugiyama, Masashi
Suzuki, Taiji Kanamori, Takafumi |
Hersteller: | Cambridge University Press |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 234 x 156 x 19 mm |
Von/Mit: | Masashi Sugiyama (u. a.) |
Erscheinungsdatum: | 01.02.2018 |
Gewicht: | 0,521 kg |
Über den Autor
Masashi Sugiyama is an Associate Professor in the Department of Computer Science at the Tokyo Institute of Technology.
Inhaltsverzeichnis
Part I. Density Ratio Approach to Machine Learning: 1. Introduction; Part II. Methods of Density Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction; Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation; Part IV. Theoretical Analysis of Density Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis; Part V. Conclusions: 17. Conclusions and future directions.
Details
Erscheinungsjahr: | 2018 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781108461733 |
ISBN-10: | 1108461735 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Sugiyama, Masashi
Suzuki, Taiji Kanamori, Takafumi |
Hersteller: | Cambridge University Press |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 234 x 156 x 19 mm |
Von/Mit: | Masashi Sugiyama (u. a.) |
Erscheinungsdatum: | 01.02.2018 |
Gewicht: | 0,521 kg |
Sicherheitshinweis