Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Descriptive Complexity
Taschenbuch von Neil Immerman
Sprache: Englisch

76,40 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
A basic issue in computer science is the complexity of problems. Computational complexity measures how much time or memory is needed as a function of the input problem size. Descriptive complexity is concerned with problems which may be described in first-order logic. By virtue of the close relationship between logic and relational databses, it turns out that this subject has important applications to databases such as analysing the queries computable in polynomial time, analysing the parallel time needed to compute a query, and the analysis of nondeterministic classes. This book is written as a graduate text and so aims to provide a reasonably self-contained introduction to this subject. The author has provided numerous examples and exercises to further illustrate the ideas presented.
A basic issue in computer science is the complexity of problems. Computational complexity measures how much time or memory is needed as a function of the input problem size. Descriptive complexity is concerned with problems which may be described in first-order logic. By virtue of the close relationship between logic and relational databses, it turns out that this subject has important applications to databases such as analysing the queries computable in polynomial time, analysing the parallel time needed to compute a query, and the analysis of nondeterministic classes. This book is written as a graduate text and so aims to provide a reasonably self-contained introduction to this subject. The author has provided numerous examples and exercises to further illustrate the ideas presented.
Zusammenfassung

Self-contained introduction to a fundamental area in computer science Provides readers with an understanding of logic and complexity Explores applications and future directions Includes numerous examples and exercises to further illustrate the ideas presented This subject has important applications to databases such as analyzing the queries computable in polynomial time, analyzing the parallel time needed to compute a query, and the analysis of nondeterministic classes

Inhaltsverzeichnis
1 Background in Logic.- 1.1 Introduction and Preliminary Definitions.- 1.2 Ordering and Arithmetic.- 1.3 Isomorphism.- 1.4 First-Order Queries.- 2 Background in Complexity.- 2.1 Introduction.- 2.2 Preliminary Definitions.- 2.3 Reductions and Complete Problems.- 2.4 Alternation.- 2.5 Simultaneous Resource Classes.- 2.6 Summary.- 3 First-Order Reductions.- 3.1 FO ? L.- 3.2 Dual of a First-Order Query.- 3.3 Complete problems for L and NL.- 3.4 Complete Problems for P.- 4 Inductive Definitions.- 4.1 Least Fixed Point.- 4.2 The Depth of Inductive Definitions.- 4.3 Iterating First-Order Formulas.- 5 Parallelism.- 5.1 Concurrent Random Access Machines.- 5.2 Inductive Depth Equals Parallel Time.- 5.3 Number of Variables Versus Number of Processors.- 5.4 Circuit Complexity.- 5.5 Alternating Complexity.- 6 Ehrenfeucht-Fraïssé Games.- 6.1 Definition of the Games.- 6.2 Methodology for First-Order Expressibility.- 6.3 First-Order Properties Are Local.- 6.4 Bounded Variable Languages.- 6.5 Zero-One Laws.- 6.6 Ehrenfeucht-Fraïssé Games with Ordering.- 7 Second-Order Logic and Fagin's Theorem.- 7.1 Second-Order Logic.- 7.2 Proof of Fagin's Theorem.- 7.3 NP-Complete Problems.- 7.4 The Polynomial-Time Hierarchy.- 8 Second-Order Lower Bounds.- 8.1 Second-Order Games.- 8.2 SO?(monadic) Lower Bound on Reachability.- 8.3 Lower Bounds Including Ordering.- 9 Complementation and Transitive Closure.- 9.1 Normal Form Theorem for FO(LFP).- 9.2 Transitive Closure Operators.- 9.3 Normal Form for FO(TC).- 9.4 Logspace is Primitive Recursive.- 9.5 NSPACE[s(n)] = co-NSPACE[s(n)].- 9.6 Restrictions of SO.- 10 Polynomial Space.- 10.1 Complete Problems for PSPACE.- 10.2 Partial Fixed Points.- 10.3 DSPACE[nk] = VAR[k + 1].- 10.4 Using Second-Order Logic to Capture PSPACE.- 11 Uniformity andPrecompulation.- 11.1 An Unbounded Number of Variables.- 11.2 First-Order Projections.- 11.3 Help Bits.- 11.4 Generalized Quantifiers.- 12 The Role of Ordering.- 12.1 Using Logic to Characterize Graphs.- 12.2 Characterizing Graphs Using Lk.- 12.3 Adding Counting to First-Order Logic.- 12.4 Pebble Games for Ck.- 12.5 Vertex Refinement Corresponds to C2.- 12.6 Abiteboul-Vianu and Otto Theorems.- 12.7 Toward a Language for Order-Independent P.- 13 Lower Bounds.- 13.1 Håstad's Switching Lemma.- 13.2 A Lower Bound for REACHa.- 13.3 Lower Bound for Fixed Point and Counting.- 14 Applications.- 14.1 Databases.- 14.2 Dynamic Complexity.- 14.3 Model Checking.- 14.4 Summary.- 15 Conclusions and Future Directions.- 15.1 Languages That Capture Complexity Classes.- 15.2 Why Is Finite Model Theory Appropriate?.- 15.3 Deep Mathematical Problems: P versus NP.- 15.4 Toward Proving Lower Bounds.- 15.5 Applications of Descriptive Complexity.- 15.6 Software Crisis and Opportunity.- References.
Details
Erscheinungsjahr: 2012
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Texts in Computer Science
Inhalt: xvi
268 S.
ISBN-13: 9781461268093
ISBN-10: 1461268095
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Immerman, Neil
Auflage: Softcover reprint of the original 1st ed. 1999
Hersteller: Springer New York
Springer US, New York, N.Y.
Texts in Computer Science
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 16 mm
Von/Mit: Neil Immerman
Erscheinungsdatum: 30.09.2012
Gewicht: 0,441 kg
Artikel-ID: 105721282
Zusammenfassung

Self-contained introduction to a fundamental area in computer science Provides readers with an understanding of logic and complexity Explores applications and future directions Includes numerous examples and exercises to further illustrate the ideas presented This subject has important applications to databases such as analyzing the queries computable in polynomial time, analyzing the parallel time needed to compute a query, and the analysis of nondeterministic classes

Inhaltsverzeichnis
1 Background in Logic.- 1.1 Introduction and Preliminary Definitions.- 1.2 Ordering and Arithmetic.- 1.3 Isomorphism.- 1.4 First-Order Queries.- 2 Background in Complexity.- 2.1 Introduction.- 2.2 Preliminary Definitions.- 2.3 Reductions and Complete Problems.- 2.4 Alternation.- 2.5 Simultaneous Resource Classes.- 2.6 Summary.- 3 First-Order Reductions.- 3.1 FO ? L.- 3.2 Dual of a First-Order Query.- 3.3 Complete problems for L and NL.- 3.4 Complete Problems for P.- 4 Inductive Definitions.- 4.1 Least Fixed Point.- 4.2 The Depth of Inductive Definitions.- 4.3 Iterating First-Order Formulas.- 5 Parallelism.- 5.1 Concurrent Random Access Machines.- 5.2 Inductive Depth Equals Parallel Time.- 5.3 Number of Variables Versus Number of Processors.- 5.4 Circuit Complexity.- 5.5 Alternating Complexity.- 6 Ehrenfeucht-Fraïssé Games.- 6.1 Definition of the Games.- 6.2 Methodology for First-Order Expressibility.- 6.3 First-Order Properties Are Local.- 6.4 Bounded Variable Languages.- 6.5 Zero-One Laws.- 6.6 Ehrenfeucht-Fraïssé Games with Ordering.- 7 Second-Order Logic and Fagin's Theorem.- 7.1 Second-Order Logic.- 7.2 Proof of Fagin's Theorem.- 7.3 NP-Complete Problems.- 7.4 The Polynomial-Time Hierarchy.- 8 Second-Order Lower Bounds.- 8.1 Second-Order Games.- 8.2 SO?(monadic) Lower Bound on Reachability.- 8.3 Lower Bounds Including Ordering.- 9 Complementation and Transitive Closure.- 9.1 Normal Form Theorem for FO(LFP).- 9.2 Transitive Closure Operators.- 9.3 Normal Form for FO(TC).- 9.4 Logspace is Primitive Recursive.- 9.5 NSPACE[s(n)] = co-NSPACE[s(n)].- 9.6 Restrictions of SO.- 10 Polynomial Space.- 10.1 Complete Problems for PSPACE.- 10.2 Partial Fixed Points.- 10.3 DSPACE[nk] = VAR[k + 1].- 10.4 Using Second-Order Logic to Capture PSPACE.- 11 Uniformity andPrecompulation.- 11.1 An Unbounded Number of Variables.- 11.2 First-Order Projections.- 11.3 Help Bits.- 11.4 Generalized Quantifiers.- 12 The Role of Ordering.- 12.1 Using Logic to Characterize Graphs.- 12.2 Characterizing Graphs Using Lk.- 12.3 Adding Counting to First-Order Logic.- 12.4 Pebble Games for Ck.- 12.5 Vertex Refinement Corresponds to C2.- 12.6 Abiteboul-Vianu and Otto Theorems.- 12.7 Toward a Language for Order-Independent P.- 13 Lower Bounds.- 13.1 Håstad's Switching Lemma.- 13.2 A Lower Bound for REACHa.- 13.3 Lower Bound for Fixed Point and Counting.- 14 Applications.- 14.1 Databases.- 14.2 Dynamic Complexity.- 14.3 Model Checking.- 14.4 Summary.- 15 Conclusions and Future Directions.- 15.1 Languages That Capture Complexity Classes.- 15.2 Why Is Finite Model Theory Appropriate?.- 15.3 Deep Mathematical Problems: P versus NP.- 15.4 Toward Proving Lower Bounds.- 15.5 Applications of Descriptive Complexity.- 15.6 Software Crisis and Opportunity.- References.
Details
Erscheinungsjahr: 2012
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Texts in Computer Science
Inhalt: xvi
268 S.
ISBN-13: 9781461268093
ISBN-10: 1461268095
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Immerman, Neil
Auflage: Softcover reprint of the original 1st ed. 1999
Hersteller: Springer New York
Springer US, New York, N.Y.
Texts in Computer Science
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 16 mm
Von/Mit: Neil Immerman
Erscheinungsdatum: 30.09.2012
Gewicht: 0,441 kg
Artikel-ID: 105721282
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte