Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Einführung in die Struktur- und Darstellungstheorie der klassischen Gruppen
Taschenbuch von Wolfgang Hein
Sprache: Deutsch

59,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Kategorien:
Beschreibung
Eine gleichermaßen aktuelle wie zusammenfassende Darstellung der wichtigsten Methoden zur Untersuchung der klassischen Gruppen fehlte bislang in deutschsprachigen Lehrbüchern. Indem der Autor die klassischen Gruppen sowohl aus algebraisch-geometrischer Sicht, wie auch mit Lieschen (infinitesimalen) Methoden studiert, schließt er diese Lücke. Die von Grund auf behandelte Darstellungstheorie mündet im algebraischen Teil in der Brauer-Weylschen Methode der Zerlegung von Tensorpotenzen durch Youngsche Symmetrieoperatoren in irreduzible Teilräume. Auf der Ebene der Lie-Algebren wird die Klassifikation der irreduziblen Darstellungen durch höchste Gewichte durchgeführt. Besonderer Wert liegt auf einer ausführlichen Erläuterung des Zusammenspiels der Gruppen und ihrer Lie-Algebren, die das Kernstück der Lieschen Theorie ausmachen. In dieser Hinsicht dient das Buch auch als Einführung in die Theorie der Lie-Gruppen; zur Parametrisierung wird dabei ausschließlich die Matrix-Exponentialabbildung verwandt, wodurch ganz auf den aufwendigen Apparat der differenzierbaren Mannigfaltigkeiten verzichtet werden kann. Eine Fülle von Beispielen und Übungsaufgaben dienen zur Vertiefung des Gelernten. Inhaltlich schließt der Text unmittelbar an die Grundvorlesungen über Analysis und Lineare Algebra an.
Eine gleichermaßen aktuelle wie zusammenfassende Darstellung der wichtigsten Methoden zur Untersuchung der klassischen Gruppen fehlte bislang in deutschsprachigen Lehrbüchern. Indem der Autor die klassischen Gruppen sowohl aus algebraisch-geometrischer Sicht, wie auch mit Lieschen (infinitesimalen) Methoden studiert, schließt er diese Lücke. Die von Grund auf behandelte Darstellungstheorie mündet im algebraischen Teil in der Brauer-Weylschen Methode der Zerlegung von Tensorpotenzen durch Youngsche Symmetrieoperatoren in irreduzible Teilräume. Auf der Ebene der Lie-Algebren wird die Klassifikation der irreduziblen Darstellungen durch höchste Gewichte durchgeführt. Besonderer Wert liegt auf einer ausführlichen Erläuterung des Zusammenspiels der Gruppen und ihrer Lie-Algebren, die das Kernstück der Lieschen Theorie ausmachen. In dieser Hinsicht dient das Buch auch als Einführung in die Theorie der Lie-Gruppen; zur Parametrisierung wird dabei ausschließlich die Matrix-Exponentialabbildung verwandt, wodurch ganz auf den aufwendigen Apparat der differenzierbaren Mannigfaltigkeiten verzichtet werden kann. Eine Fülle von Beispielen und Übungsaufgaben dienen zur Vertiefung des Gelernten. Inhaltlich schließt der Text unmittelbar an die Grundvorlesungen über Analysis und Lineare Algebra an.
Inhaltsverzeichnis
I. Die klassischen Gruppen.- § 1 Grundlagen der allgemeinen Gruppentheorie.- § 2 Die allgemeine und die spezielle lineare Gruppe.- § 3 Symmetrische Bilinearformen und Hermitesche Formen.- § 4 Orthogonale und unitäre Gruppen.- §5 Symplektische Gruppen.- II. Abgeschlossene Untergruppen von GL(n, K).- § 1 Die Matrix-Exponentialabbildung.- § 2 Lineare Gruppen und ihre Lie-Algebren.- § 3 Homomorphismen linearer Gruppen und ihrer Lie-Algebren.- III. Darstellungen der klassischen Gruppen.- § 1 Grundlagen der allgemeinen Darstellungstheorie von Gruppen.- § 2 Darstellungstheorie der klassischen Gruppen (globale Methode).- IV. Halbeinfache komplexe Lie-Algebren.- § 1 Von der Darstellungstheorie linearer Gruppen zur Darstellungstheorie von Lie-Algebren.- § 2 Halbeinfache Lie-Algebren.- § 3 Darstellungen halbeinfacher Lie-Algebren.- Literatur.- Symbolverzeichnis.- Namenverzeichnis.
Details
Erscheinungsjahr: 1990
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Hochschultext
Inhalt: x
255 S.
ISBN-13: 9783540506171
ISBN-10: 3540506179
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Hein, Wolfgang
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Hochschultext
Maße: 242 x 170 x 15 mm
Von/Mit: Wolfgang Hein
Erscheinungsdatum: 27.06.1990
Gewicht: 0,471 kg
Artikel-ID: 102539550
Inhaltsverzeichnis
I. Die klassischen Gruppen.- § 1 Grundlagen der allgemeinen Gruppentheorie.- § 2 Die allgemeine und die spezielle lineare Gruppe.- § 3 Symmetrische Bilinearformen und Hermitesche Formen.- § 4 Orthogonale und unitäre Gruppen.- §5 Symplektische Gruppen.- II. Abgeschlossene Untergruppen von GL(n, K).- § 1 Die Matrix-Exponentialabbildung.- § 2 Lineare Gruppen und ihre Lie-Algebren.- § 3 Homomorphismen linearer Gruppen und ihrer Lie-Algebren.- III. Darstellungen der klassischen Gruppen.- § 1 Grundlagen der allgemeinen Darstellungstheorie von Gruppen.- § 2 Darstellungstheorie der klassischen Gruppen (globale Methode).- IV. Halbeinfache komplexe Lie-Algebren.- § 1 Von der Darstellungstheorie linearer Gruppen zur Darstellungstheorie von Lie-Algebren.- § 2 Halbeinfache Lie-Algebren.- § 3 Darstellungen halbeinfacher Lie-Algebren.- Literatur.- Symbolverzeichnis.- Namenverzeichnis.
Details
Erscheinungsjahr: 1990
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Hochschultext
Inhalt: x
255 S.
ISBN-13: 9783540506171
ISBN-10: 3540506179
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Hein, Wolfgang
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Hochschultext
Maße: 242 x 170 x 15 mm
Von/Mit: Wolfgang Hein
Erscheinungsdatum: 27.06.1990
Gewicht: 0,471 kg
Artikel-ID: 102539550
Warnhinweis