Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Elementare Wahrscheinlichkeitsrechnung
Vom Umgang mit dem Zufall
Taschenbuch von Walter Warmuth (u. a.)
Sprache: Deutsch

27,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
Wahrscheinlichkeit, Statistik und zufällige Prozesse stehen im Mittelpunkt dieses Lehrbuches. Der Leser erfährt, wie Informationen aus realen statistischen Daten aufbereitet und beschrieben werden können, und er kommt den Gesetzen des Zufalls auf die Spur.
Wahrscheinlichkeit, Statistik und zufällige Prozesse stehen im Mittelpunkt dieses Lehrbuches. Der Leser erfährt, wie Informationen aus realen statistischen Daten aufbereitet und beschrieben werden können, und er kommt den Gesetzen des Zufalls auf die Spur.
Inhaltsverzeichnis
1 Auswertung von statistischen Daten.- 1.1 Merkmale, Urliste, Strichliste, Stengel-und-Blatt-Diagramm.- 1.2 Klasseneinteilungen.- 1.3 Relative Häufigkeiten und Häufigkeitsverteilungen.- 1.4 Kenngrößen von Häufigkeitsverteilungen.- 2 Modelle für Vorgänge mit zufälligem Ergebnis.- 2.1 Ergebnismenge und Ereignisse.- 2.2 Das empirische Gesetz der großen Zahlen.- 2.3 Operationen mit Ereignissen.- 2.4 Wahrscheinlichkeit.- 2.5 Mehrstufige Vorgänge und Baumdiagramme.- 2.6 Die Pfadregeln.- 2.7 Anzahlbestimmung mit Hilfe von Baumdiagrammen.- 3 Bedingte Wahrscheinlichkeiten und Unabhängigkeit.- 3.1 Bedingte Wahrscheinlichkeiten.- 3.2 Unabhängigkeit von zwei Ereignissen.- 3.3 Unabhängigkeit von n Ereignissen.- 3.4 Operationen mit unabhängigen Ereignissen.- 3.5 Genetische Modelle.- 3.6 Zuverlässigkeit von Systemen.- 3.7 Bernoulli-Experimente und Bernoulli-Ketten.- 4 Diskrete Zufallsgrößen.- 4.1 Zufallsgrößen und ihre Verteilung.- 4.2 Der Erwartungswert einer Zufallsgröße.- 4.3 Die Varianz einer Zufallsgröße.- 4.4 Eigenschaften des Erwartungswertes und der Varianz.- 5 Die Binomialverteilung und das Bernoullische Gesetz der großen Zahlen.- 5.1 Die Verteilung der Anzahl der Erfolge in einer Bernoulli-Kette.- 5.2 Kenngrößen der Verteilung der Anzahl der Erfolge.- 5.3 Lange Bernoulli-Ketten.- 5.4 Das Bernoullische Gesetz der großen Zahlen.- 6 Testen von Hypothesen über eine unbekannte Wahrscheinlichkeit.- 6.1 Das Testproblem.- 6.2 Die Entscheidungsregel.- 6.3 Die Fehlermöglichkeiten und signifikante Abweichungen.- 6.4 Das beobachtete Signifikanzniveau.- 7 Simulation von Vorgängen mit zufälligem Ergebnis.- 7.1 Zufallsgeneratoren.- 7.2 Zwei Simulationsstudien.- 7.3 Testen von Zufallsziffern.- 7.4 Ziehen von zufälligen Stichproben.- Lösungen.-Literaturhinweise.- Stichwortverzeichnis.
Details
Erscheinungsjahr: 1998
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Mathematik-ABC für das Lehramt
Inhalt: 152 S.
ISBN-13: 9783519002253
ISBN-10: 3519002256
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Warmuth, Walter
Warmuth, Elke
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Mathematik-ABC für das Lehramt
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 244 x 170 x 9 mm
Von/Mit: Walter Warmuth (u. a.)
Erscheinungsdatum: 01.01.1998
Gewicht: 0,282 kg
Artikel-ID: 106832897
Inhaltsverzeichnis
1 Auswertung von statistischen Daten.- 1.1 Merkmale, Urliste, Strichliste, Stengel-und-Blatt-Diagramm.- 1.2 Klasseneinteilungen.- 1.3 Relative Häufigkeiten und Häufigkeitsverteilungen.- 1.4 Kenngrößen von Häufigkeitsverteilungen.- 2 Modelle für Vorgänge mit zufälligem Ergebnis.- 2.1 Ergebnismenge und Ereignisse.- 2.2 Das empirische Gesetz der großen Zahlen.- 2.3 Operationen mit Ereignissen.- 2.4 Wahrscheinlichkeit.- 2.5 Mehrstufige Vorgänge und Baumdiagramme.- 2.6 Die Pfadregeln.- 2.7 Anzahlbestimmung mit Hilfe von Baumdiagrammen.- 3 Bedingte Wahrscheinlichkeiten und Unabhängigkeit.- 3.1 Bedingte Wahrscheinlichkeiten.- 3.2 Unabhängigkeit von zwei Ereignissen.- 3.3 Unabhängigkeit von n Ereignissen.- 3.4 Operationen mit unabhängigen Ereignissen.- 3.5 Genetische Modelle.- 3.6 Zuverlässigkeit von Systemen.- 3.7 Bernoulli-Experimente und Bernoulli-Ketten.- 4 Diskrete Zufallsgrößen.- 4.1 Zufallsgrößen und ihre Verteilung.- 4.2 Der Erwartungswert einer Zufallsgröße.- 4.3 Die Varianz einer Zufallsgröße.- 4.4 Eigenschaften des Erwartungswertes und der Varianz.- 5 Die Binomialverteilung und das Bernoullische Gesetz der großen Zahlen.- 5.1 Die Verteilung der Anzahl der Erfolge in einer Bernoulli-Kette.- 5.2 Kenngrößen der Verteilung der Anzahl der Erfolge.- 5.3 Lange Bernoulli-Ketten.- 5.4 Das Bernoullische Gesetz der großen Zahlen.- 6 Testen von Hypothesen über eine unbekannte Wahrscheinlichkeit.- 6.1 Das Testproblem.- 6.2 Die Entscheidungsregel.- 6.3 Die Fehlermöglichkeiten und signifikante Abweichungen.- 6.4 Das beobachtete Signifikanzniveau.- 7 Simulation von Vorgängen mit zufälligem Ergebnis.- 7.1 Zufallsgeneratoren.- 7.2 Zwei Simulationsstudien.- 7.3 Testen von Zufallsziffern.- 7.4 Ziehen von zufälligen Stichproben.- Lösungen.-Literaturhinweise.- Stichwortverzeichnis.
Details
Erscheinungsjahr: 1998
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Mathematik-ABC für das Lehramt
Inhalt: 152 S.
ISBN-13: 9783519002253
ISBN-10: 3519002256
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Warmuth, Walter
Warmuth, Elke
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Mathematik-ABC für das Lehramt
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 244 x 170 x 9 mm
Von/Mit: Walter Warmuth (u. a.)
Erscheinungsdatum: 01.01.1998
Gewicht: 0,282 kg
Artikel-ID: 106832897
Sicherheitshinweis