74,90 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
The book starts with a description of commonly used statistical assumptions and exploratory data analysis tools for the verification of these assumptions. It then focuses on the process of building suitable statistical models, including linear and nonlinear models, classification and regression trees, generalized linear models, and multilevel models. It also discusses the use of simulation for model checking, and provides tools for a critical assessment of the developed models. The second edition also includes a complete critique of a threshold model.
Environmental and Ecological Statistics with R, Second Edition focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the process of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model.
The book starts with a description of commonly used statistical assumptions and exploratory data analysis tools for the verification of these assumptions. It then focuses on the process of building suitable statistical models, including linear and nonlinear models, classification and regression trees, generalized linear models, and multilevel models. It also discusses the use of simulation for model checking, and provides tools for a critical assessment of the developed models. The second edition also includes a complete critique of a threshold model.
Environmental and Ecological Statistics with R, Second Edition focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the process of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model.
Song S. Qian, PhD, is an assistant professor in the Department of Environmental Sciences at the University of Toledo, Ohio, USA
I Basic Concepts
Introduction
A Crash Course on R
Statistical Assumptions
Statistical Inference
II Statistical Modeling
Linear Models
Nonlinear Models
Classi cation and Regression Tree
Generalized Linear Model
III Advanced Statistical Modeling
Simulation for Model Checking and Statistical Inference
Multilevel Regression
Using Simulation for Evaluating Models Based on Statistical Signicance Testing
Bibliography
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9780367736750 |
ISBN-10: | 0367736756 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Qian, Song S. |
Auflage: | 2. Auflage |
Hersteller: | Chapman and Hall/CRC |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 234 x 156 x 30 mm |
Von/Mit: | Song S. Qian |
Erscheinungsdatum: | 18.12.2020 |
Gewicht: | 0,84 kg |
Song S. Qian, PhD, is an assistant professor in the Department of Environmental Sciences at the University of Toledo, Ohio, USA
I Basic Concepts
Introduction
A Crash Course on R
Statistical Assumptions
Statistical Inference
II Statistical Modeling
Linear Models
Nonlinear Models
Classi cation and Regression Tree
Generalized Linear Model
III Advanced Statistical Modeling
Simulation for Model Checking and Statistical Inference
Multilevel Regression
Using Simulation for Evaluating Models Based on Statistical Signicance Testing
Bibliography
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9780367736750 |
ISBN-10: | 0367736756 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Qian, Song S. |
Auflage: | 2. Auflage |
Hersteller: | Chapman and Hall/CRC |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 234 x 156 x 30 mm |
Von/Mit: | Song S. Qian |
Erscheinungsdatum: | 18.12.2020 |
Gewicht: | 0,84 kg |