Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Essential Statistics for Non-STEM Data Analysts
Get to grips with the statistics and math knowledge needed to enter the world of data science with Python
Taschenbuch von Rongpeng Li
Sprache: Englisch

54,75 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Reinforce your understanding of data science and data analysis from a statistical perspective to extract meaningful insights from your data using Python programming

Key featuresWork your way through the entire data analysis pipeline with statistics concerns in mind to make reasonable decisions
Understand how various data science algorithms function
Build a solid foundation in statistics for data science and machine learning using Python-based examples

Book Description
Statistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks.

The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You'll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you'll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you've uncovered the working mechanism of data science algorithms, you'll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you'll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning.

By the end of this Essential Statistics for Non-STEM Data Analysts book, you'll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals.

What you will learnFind out how to grab and load data into an analysis environment
Perform descriptive analysis to extract meaningful summaries from data
Discover probability, parameter estimation, hypothesis tests, and experiment design best practices
Get to grips with resampling and bootstrapping in Python
Delve into statistical tests with variance analysis, time series analysis, and A/B test examples
Understand the statistics behind popular machine learning algorithms
Answer questions on statistics for data scientist interviews

Who this book is for
This book is an entry-level guide for data science enthusiasts, data analysts, and anyone starting out in the field of data science and looking to learn the essential statistical concepts with the help of simple explanations and examples. If you're a developer or student with a non-mathematical background, you'll find this book useful. Working knowledge of the Python programming language is required.
Reinforce your understanding of data science and data analysis from a statistical perspective to extract meaningful insights from your data using Python programming

Key featuresWork your way through the entire data analysis pipeline with statistics concerns in mind to make reasonable decisions
Understand how various data science algorithms function
Build a solid foundation in statistics for data science and machine learning using Python-based examples

Book Description
Statistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks.

The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You'll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you'll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you've uncovered the working mechanism of data science algorithms, you'll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you'll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning.

By the end of this Essential Statistics for Non-STEM Data Analysts book, you'll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals.

What you will learnFind out how to grab and load data into an analysis environment
Perform descriptive analysis to extract meaningful summaries from data
Discover probability, parameter estimation, hypothesis tests, and experiment design best practices
Get to grips with resampling and bootstrapping in Python
Delve into statistical tests with variance analysis, time series analysis, and A/B test examples
Understand the statistics behind popular machine learning algorithms
Answer questions on statistics for data scientist interviews

Who this book is for
This book is an entry-level guide for data science enthusiasts, data analysts, and anyone starting out in the field of data science and looking to learn the essential statistical concepts with the help of simple explanations and examples. If you're a developer or student with a non-mathematical background, you'll find this book useful. Working knowledge of the Python programming language is required.
Über den Autor
Rongpeng Li is a data science instructor and a senior data scientist at Galvanize, Inc. He has previously been a research programmer at Information Sciences Institute, working on knowledge graphs and artificial intelligence. He has also been the host and organizer of the Data Analysis Workshop Designed for Non-STEM Busy Professionals at LA.
Details
Erscheinungsjahr: 2020
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781838984847
ISBN-10: 1838984844
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Li, Rongpeng
Hersteller: Packt Publishing
Maße: 235 x 191 x 21 mm
Von/Mit: Rongpeng Li
Erscheinungsdatum: 13.11.2020
Gewicht: 0,733 kg
Artikel-ID: 119404968
Über den Autor
Rongpeng Li is a data science instructor and a senior data scientist at Galvanize, Inc. He has previously been a research programmer at Information Sciences Institute, working on knowledge graphs and artificial intelligence. He has also been the host and organizer of the Data Analysis Workshop Designed for Non-STEM Busy Professionals at LA.
Details
Erscheinungsjahr: 2020
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781838984847
ISBN-10: 1838984844
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Li, Rongpeng
Hersteller: Packt Publishing
Maße: 235 x 191 x 21 mm
Von/Mit: Rongpeng Li
Erscheinungsdatum: 13.11.2020
Gewicht: 0,733 kg
Artikel-ID: 119404968
Warnhinweis