Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Finding Groups in Data
An Introduction to Cluster Analysis
Taschenbuch von Leonard Kaufman (u. a.)
Sprache: Englisch

155,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
An introduction to the practical application of cluster analysis, Finding Groups in Data presents a selection of methods that together can deal with most applications. These methods are chosen for their robustness, consistency, and general applicability. The text discusses the main approaches to clustering and provides guidance in choosing between the available methods. It also discusses various types of data, including interval-scaled and binary variables as well as similarity data and explains how these can be transformed prior to clustering. With numerous exercises to aid learning, Finding Groups in Data provides an invaluable introduction to cluster analysis with an emphasis on methods that are both easy to use and modern.
An introduction to the practical application of cluster analysis, Finding Groups in Data presents a selection of methods that together can deal with most applications. These methods are chosen for their robustness, consistency, and general applicability. The text discusses the main approaches to clustering and provides guidance in choosing between the available methods. It also discusses various types of data, including interval-scaled and binary variables as well as similarity data and explains how these can be transformed prior to clustering. With numerous exercises to aid learning, Finding Groups in Data provides an invaluable introduction to cluster analysis with an emphasis on methods that are both easy to use and modern.
Über den Autor
LEONARD KAUFMAN, PhD, is affiliated with Vrije University in Brussels, Belgium.

PETER J. ROUSSEEUW, PhD, is a Professor in the Department of Mathematics and Computer Science at the University of Antwerp in Belgium.

Inhaltsverzeichnis
1. Introduction.

2. Partitioning Around Medoids (Program PAM).

3. Clustering large Applications (Program CLARA).

4. Fuzzy Analysis.

5. Agglomerative Nesting (Program AGNES).

6. Divisive Analysis (Program DIANA).

7. Monothetic Analysis (Program MONA).

Appendix 1. Implementation and Structure of the Programs.

Appendix 2. Running the Programs.

Appendix 3. Adapting the Programs to Your Needs.

Appendix 4. The Program CLUSPLOT.

References.

Author Index.

Subject Index.

Details
Erscheinungsjahr: 2005
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 368 S.
ISBN-13: 9780471735786
ISBN-10: 0471735787
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Kaufman, Leonard
Rousseeuw, Peter J
Hersteller: Wiley
John Wiley & Sons
Maße: 234 x 156 x 20 mm
Von/Mit: Leonard Kaufman (u. a.)
Erscheinungsdatum: 25.03.2005
Gewicht: 0,559 kg
Artikel-ID: 102303637
Über den Autor
LEONARD KAUFMAN, PhD, is affiliated with Vrije University in Brussels, Belgium.

PETER J. ROUSSEEUW, PhD, is a Professor in the Department of Mathematics and Computer Science at the University of Antwerp in Belgium.

Inhaltsverzeichnis
1. Introduction.

2. Partitioning Around Medoids (Program PAM).

3. Clustering large Applications (Program CLARA).

4. Fuzzy Analysis.

5. Agglomerative Nesting (Program AGNES).

6. Divisive Analysis (Program DIANA).

7. Monothetic Analysis (Program MONA).

Appendix 1. Implementation and Structure of the Programs.

Appendix 2. Running the Programs.

Appendix 3. Adapting the Programs to Your Needs.

Appendix 4. The Program CLUSPLOT.

References.

Author Index.

Subject Index.

Details
Erscheinungsjahr: 2005
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 368 S.
ISBN-13: 9780471735786
ISBN-10: 0471735787
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Kaufman, Leonard
Rousseeuw, Peter J
Hersteller: Wiley
John Wiley & Sons
Maße: 234 x 156 x 20 mm
Von/Mit: Leonard Kaufman (u. a.)
Erscheinungsdatum: 25.03.2005
Gewicht: 0,559 kg
Artikel-ID: 102303637
Warnhinweis