Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Fourier Series, Fourier Transform and Their Applications to Mathematical Physics
Buch von Valery Serov
Sprache: Englisch

130,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences. Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing. The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations. The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, servesas an introduction to modern methods for classical theory of partial differential equations.
Complete with nearly 250 exercises throughout, this text is intended for graduate level students and researchers in the mathematical sciences and engineering.
This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences. Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing. The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations. The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, servesas an introduction to modern methods for classical theory of partial differential equations.
Complete with nearly 250 exercises throughout, this text is intended for graduate level students and researchers in the mathematical sciences and engineering.
Über den Autor
Valery Serov is Professor of Mathematics at the University of Oulu. Professor Serov received his PhD in Applied Mathematics in 1979 from Lomonosov Moscow State University. He has over 120 publications, including 3 textbooks published in Russian.
Zusammenfassung
Each chapter is self-contained and can be read independently
Content grew from a series of half-semester courses given at University of Oulu
Contains material only previously published in scientific journals
Useful to both students and researchers who have applications in mathematical physics and engineering sciences
Inhaltsverzeichnis
Part I: Fourier Series and the Discrete Fourier Transform.- Introduction.- Formulation of Fourier Series.- Fourier Coefficients and their Properties.- Convolution and Parseval Equality.- Fejer Means of Fourier Series: Uniqueness of the Fourier Series.- Riemann-Lebesgue Lemma.- Fourier Series of Square-Integrable Function: Riesz-Fischer Theorem.- Besov and Holder Spaces.- Absolute Convergence: Bernstein and Peetre Theorems.- Dirichlet Kernel: Pointwise and Uniform Congergence.- Formulation of Discrete Fourier Transform and its Properties.- Connection Between the Discrete Fourier Transform and the Fourier Transform.- Some Applications of Discrete Fourier Transform.- Applications to Solving Some Model Equations.- Part II: Fourier Transform and Distributions.- Introduction.- Fourier Transform in Schwartz Space.- Fourier Transform in Lp(Rn);1 p 2.- Tempered Distributions.- Convolutions in S and S^1.- Sobolev Spaces.- Homogeneous Distributions.- Fundamental Solution of the Helmholtz Operator.- Estimates for Laplacian and Hamiltonian.- Part III: Operator Theory and Integral Equations.- Introduction.- Inner Product Spaces and Hilbert Spaces.- Symmetric Operators in Hilbert Spaces.- J. von Neumann's Spectral Theorem.- Spectrum of Self-Adjoint Operators.- Quadratic Forms: Freidrich's Extension.- Elliptic Differential Operators.- Spectral Function.- Schrodinger Operator.- Magnetic Schrodinger Operator.- Integral Operators with Weak Singularities: Integral Equations of the First and Second Kind.- Volterra and Singular Integral Equations.- Approximate Methods.- Part IV: Partial Differential Equations.- Introduction.- Local Existence Theory.- The Laplace Operator.- The Dirichlet and Neumman Problems.- Layer Potentials.- Elliptic Boundary Value Problems.- Direct Scattering Problem for Helmholtz Equation.- Some Inverse Scattering Problems for the Schrodinger Operator.- The Heat Operator.- The Wave Operator.
Details
Erscheinungsjahr: 2017
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xi
534 S.
4 s/w Illustr.
534 p. 4 illus.
ISBN-13: 9783319652610
ISBN-10: 3319652613
Sprache: Englisch
Herstellernummer: 978-3-319-65261-0
Einband: Gebunden
Autor: Serov, Valery
Auflage: 1st edition 2017
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 35 mm
Von/Mit: Valery Serov
Erscheinungsdatum: 18.12.2017
Gewicht: 0,98 kg
Artikel-ID: 110849372
Über den Autor
Valery Serov is Professor of Mathematics at the University of Oulu. Professor Serov received his PhD in Applied Mathematics in 1979 from Lomonosov Moscow State University. He has over 120 publications, including 3 textbooks published in Russian.
Zusammenfassung
Each chapter is self-contained and can be read independently
Content grew from a series of half-semester courses given at University of Oulu
Contains material only previously published in scientific journals
Useful to both students and researchers who have applications in mathematical physics and engineering sciences
Inhaltsverzeichnis
Part I: Fourier Series and the Discrete Fourier Transform.- Introduction.- Formulation of Fourier Series.- Fourier Coefficients and their Properties.- Convolution and Parseval Equality.- Fejer Means of Fourier Series: Uniqueness of the Fourier Series.- Riemann-Lebesgue Lemma.- Fourier Series of Square-Integrable Function: Riesz-Fischer Theorem.- Besov and Holder Spaces.- Absolute Convergence: Bernstein and Peetre Theorems.- Dirichlet Kernel: Pointwise and Uniform Congergence.- Formulation of Discrete Fourier Transform and its Properties.- Connection Between the Discrete Fourier Transform and the Fourier Transform.- Some Applications of Discrete Fourier Transform.- Applications to Solving Some Model Equations.- Part II: Fourier Transform and Distributions.- Introduction.- Fourier Transform in Schwartz Space.- Fourier Transform in Lp(Rn);1 p 2.- Tempered Distributions.- Convolutions in S and S^1.- Sobolev Spaces.- Homogeneous Distributions.- Fundamental Solution of the Helmholtz Operator.- Estimates for Laplacian and Hamiltonian.- Part III: Operator Theory and Integral Equations.- Introduction.- Inner Product Spaces and Hilbert Spaces.- Symmetric Operators in Hilbert Spaces.- J. von Neumann's Spectral Theorem.- Spectrum of Self-Adjoint Operators.- Quadratic Forms: Freidrich's Extension.- Elliptic Differential Operators.- Spectral Function.- Schrodinger Operator.- Magnetic Schrodinger Operator.- Integral Operators with Weak Singularities: Integral Equations of the First and Second Kind.- Volterra and Singular Integral Equations.- Approximate Methods.- Part IV: Partial Differential Equations.- Introduction.- Local Existence Theory.- The Laplace Operator.- The Dirichlet and Neumman Problems.- Layer Potentials.- Elliptic Boundary Value Problems.- Direct Scattering Problem for Helmholtz Equation.- Some Inverse Scattering Problems for the Schrodinger Operator.- The Heat Operator.- The Wave Operator.
Details
Erscheinungsjahr: 2017
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xi
534 S.
4 s/w Illustr.
534 p. 4 illus.
ISBN-13: 9783319652610
ISBN-10: 3319652613
Sprache: Englisch
Herstellernummer: 978-3-319-65261-0
Einband: Gebunden
Autor: Serov, Valery
Auflage: 1st edition 2017
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 35 mm
Von/Mit: Valery Serov
Erscheinungsdatum: 18.12.2017
Gewicht: 0,98 kg
Artikel-ID: 110849372
Sicherheitshinweis