267,49 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.
This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.
Provides new geometric foundations of inference in machine learning based on statistical physics
Deepens mathematical physics models with new insights from statistical machine learning
Combines numerical schemes from geometric integrators in physics with intrinsic machine learning inference
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Springer Proceedings in Mathematics & Statistics |
Inhalt: |
xiii
459 S. 24 s/w Illustr. 63 farbige Illustr. 459 p. 87 illus. 63 illus. in color. |
ISBN-13: | 9783030779597 |
ISBN-10: | 3030779599 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Redaktion: |
Nielsen, Frank
Barbaresco, Frédéric |
Herausgeber: | Frédéric Barbaresco/Frank Nielsen |
Auflage: | 1st ed. 2021 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Proceedings in Mathematics & Statistics |
Maße: | 235 x 155 x 26 mm |
Von/Mit: | Frank Nielsen (u. a.) |
Erscheinungsdatum: | 28.06.2022 |
Gewicht: | 0,715 kg |
Provides new geometric foundations of inference in machine learning based on statistical physics
Deepens mathematical physics models with new insights from statistical machine learning
Combines numerical schemes from geometric integrators in physics with intrinsic machine learning inference
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Springer Proceedings in Mathematics & Statistics |
Inhalt: |
xiii
459 S. 24 s/w Illustr. 63 farbige Illustr. 459 p. 87 illus. 63 illus. in color. |
ISBN-13: | 9783030779597 |
ISBN-10: | 3030779599 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Redaktion: |
Nielsen, Frank
Barbaresco, Frédéric |
Herausgeber: | Frédéric Barbaresco/Frank Nielsen |
Auflage: | 1st ed. 2021 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Proceedings in Mathematics & Statistics |
Maße: | 235 x 155 x 26 mm |
Von/Mit: | Frank Nielsen (u. a.) |
Erscheinungsdatum: | 28.06.2022 |
Gewicht: | 0,715 kg |