39,99 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Dieses Lehrbuch bietet eine gründliche und dennoch leicht verständliche Einführung in die Theorie gewöhnlicher Differenzialgleichungen. Der behandelte Lehrstoff betont zeitgemäße nichtlineare Fragestellungen und qualitative Untersuchungsmethoden - bis hin zu den Grundzügen der Stabilitäts- und Verzweigungstheorie. In der Neuauflage wird jedoch - auf Wunsch zahlreicher Leser - den linearen Differenzialgleichungen speziell im Hinblick auf Randwertprobleme und Potenzreihenlösungen mehr Aufmerksamkeit gewidmet.
Die Darstellung ist besonders ausführlich und in allen Einzelheiten ausgearbeitet - angereichert durch 120 Beispiele, 190 Abbildungen und 200 zum Teil neue Aufgaben (mit Lösungen im Internet).
Dieses Lehrbuch bietet eine gründliche und dennoch leicht verständliche Einführung in die Theorie gewöhnlicher Differenzialgleichungen. Der behandelte Lehrstoff betont zeitgemäße nichtlineare Fragestellungen und qualitative Untersuchungsmethoden - bis hin zu den Grundzügen der Stabilitäts- und Verzweigungstheorie. In der Neuauflage wird jedoch - auf Wunsch zahlreicher Leser - den linearen Differenzialgleichungen speziell im Hinblick auf Randwertprobleme und Potenzreihenlösungen mehr Aufmerksamkeit gewidmet.
Die Darstellung ist besonders ausführlich und in allen Einzelheiten ausgearbeitet - angereichert durch 120 Beispiele, 190 Abbildungen und 200 zum Teil neue Aufgaben (mit Lösungen im Internet).
eine moderne, dennoch gut verständliche Einführung in die gewöhnlichen Differenzialgleichungen.
Ausgewogenes Verhältnis zwischen klassischer Theorie und neueren Themen, wie Stabilitätstheorie und qualitativen Methoden
vollständig überarbeitete und ergänzte Neuauflage.
Reich illustriert 190 Abbildungen
Eine Fülle von Beispielmaterial: 120 Beispiele und 200 Aufgaben.
Includes supplementary material: [...]
1.1 Differenzialgleichungs- und Lösungsbegriff
1.2 Anfangswertprobleme
1.3 Anwendungen
1.4 Zwei nützliche Umformungen
1.4.1 Reduktion auf Systeme 1. Ordnung
1.4.2 Integralgleichungen
1.5 Geometrische Veranschaulichung
1.6 Rückschau und Ausblick
2 Existenztheorie
2.1 Näherungslösungen
2.1.1 Euler-Polygone
2.1.2 Picard-Iterierte
2.2 Der Satz von Peano
2.3 Der Satz von Picard-Lindelöf
2.4 Der globale Existenz- und Eindeutigkeitssatz
2.5 Die maximale Lösung eines Anfangswertproblems
2.6 Die allgemeine Lösung einer Differenzialgleichung
2.7 Rückschau und Ausblick
3 Autonome Systeme
3.1 Grundlegendes
3.2 Trajektorien
3.3 Phasenporträt und Richtungsfeld
3.4 Euler-Polygone
3.5 Rückschau und Ausblick
4 Skalare Differenzialgleichungen
4.1 Exakte Differenzialgleichungen
4.2 Integrierende Faktoren
4.3 Transformationen
4.4 Rückschau und Ausblick
5 Ebene autonome Systeme
5.1 Reduktion auf skalare Differenzialgleichungen
5.2 Systeme in Polarkoordinaten
5.3 Lineare ebene autonome Systeme
5.4 Rückschau und Ausblick
6 Lineare Systeme
6.1 Algebraische Struktur des Lösungsraums
6.2 Fundamentalmatrizen und Übergangsmatrix
6.3 Lineare Systeme mit konstanten Koeffzienten
6.4 Lineare Systeme mit analytischen Koeffzienten
6.5 Lineare Differenzialgleichungen höherer Ordnung
6.6 Rückschau und Ausblick
7 Nichtlineare Systeme
7.1 Parameterabhängige Differenzialgleichungen
7.2 Stetigkeit der allgemeinen Lösung
7.3 Differenzierbarkeit der allgemeinen Lösung
7.4 Grundbegriffe der Stabilitätstheorie
7.5 Stabilität linearer Systeme
7.6 Linearisierte asymptotische Stabilität
7.7 Invariante Mengen und Grenzmengen
7.8 Ljapunov-Funktionen .
7.9 Die direkte Methode von Ljapunov
7.10 Verzweigung von Ruhelagen
7.10.1 Sattel-Knoten-Verzweigung
7.10.2 Transkritische Verzweigung
7.10.3 Heugabel-Verzweigung
7.11 Verzweigung geschlossener Trajektorien
7.12 Rückschau und Ausblick
Anhang A Analysis vektor- und matrix-wertiger Funktionen
Anhang B Der Satz von Arzelà-Ascoli
Anhang C Eigenschaften der dist-Funktion
Literaturverzeichnis
Symbolverzeichnis
Sach- und Namensverzeichnis
Lösungen ausgewählter Aufgaben: [...]
Erscheinungsjahr: | 2004 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xii
440 S. |
ISBN-13: | 9783827414922 |
ISBN-10: | 382741492X |
Sprache: | Deutsch |
Herstellernummer: | 12154111 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Aulbach, Bernd |
Auflage: | 2. Aufl. 2004 |
Hersteller: | Spektrum Akademischer Verlag |
Maße: | 240 x 168 x 25 mm |
Von/Mit: | Bernd Aulbach |
Erscheinungsdatum: | 24.05.2004 |
Gewicht: | 0,753 kg |
eine moderne, dennoch gut verständliche Einführung in die gewöhnlichen Differenzialgleichungen.
Ausgewogenes Verhältnis zwischen klassischer Theorie und neueren Themen, wie Stabilitätstheorie und qualitativen Methoden
vollständig überarbeitete und ergänzte Neuauflage.
Reich illustriert 190 Abbildungen
Eine Fülle von Beispielmaterial: 120 Beispiele und 200 Aufgaben.
Includes supplementary material: [...]
1.1 Differenzialgleichungs- und Lösungsbegriff
1.2 Anfangswertprobleme
1.3 Anwendungen
1.4 Zwei nützliche Umformungen
1.4.1 Reduktion auf Systeme 1. Ordnung
1.4.2 Integralgleichungen
1.5 Geometrische Veranschaulichung
1.6 Rückschau und Ausblick
2 Existenztheorie
2.1 Näherungslösungen
2.1.1 Euler-Polygone
2.1.2 Picard-Iterierte
2.2 Der Satz von Peano
2.3 Der Satz von Picard-Lindelöf
2.4 Der globale Existenz- und Eindeutigkeitssatz
2.5 Die maximale Lösung eines Anfangswertproblems
2.6 Die allgemeine Lösung einer Differenzialgleichung
2.7 Rückschau und Ausblick
3 Autonome Systeme
3.1 Grundlegendes
3.2 Trajektorien
3.3 Phasenporträt und Richtungsfeld
3.4 Euler-Polygone
3.5 Rückschau und Ausblick
4 Skalare Differenzialgleichungen
4.1 Exakte Differenzialgleichungen
4.2 Integrierende Faktoren
4.3 Transformationen
4.4 Rückschau und Ausblick
5 Ebene autonome Systeme
5.1 Reduktion auf skalare Differenzialgleichungen
5.2 Systeme in Polarkoordinaten
5.3 Lineare ebene autonome Systeme
5.4 Rückschau und Ausblick
6 Lineare Systeme
6.1 Algebraische Struktur des Lösungsraums
6.2 Fundamentalmatrizen und Übergangsmatrix
6.3 Lineare Systeme mit konstanten Koeffzienten
6.4 Lineare Systeme mit analytischen Koeffzienten
6.5 Lineare Differenzialgleichungen höherer Ordnung
6.6 Rückschau und Ausblick
7 Nichtlineare Systeme
7.1 Parameterabhängige Differenzialgleichungen
7.2 Stetigkeit der allgemeinen Lösung
7.3 Differenzierbarkeit der allgemeinen Lösung
7.4 Grundbegriffe der Stabilitätstheorie
7.5 Stabilität linearer Systeme
7.6 Linearisierte asymptotische Stabilität
7.7 Invariante Mengen und Grenzmengen
7.8 Ljapunov-Funktionen .
7.9 Die direkte Methode von Ljapunov
7.10 Verzweigung von Ruhelagen
7.10.1 Sattel-Knoten-Verzweigung
7.10.2 Transkritische Verzweigung
7.10.3 Heugabel-Verzweigung
7.11 Verzweigung geschlossener Trajektorien
7.12 Rückschau und Ausblick
Anhang A Analysis vektor- und matrix-wertiger Funktionen
Anhang B Der Satz von Arzelà-Ascoli
Anhang C Eigenschaften der dist-Funktion
Literaturverzeichnis
Symbolverzeichnis
Sach- und Namensverzeichnis
Lösungen ausgewählter Aufgaben: [...]
Erscheinungsjahr: | 2004 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xii
440 S. |
ISBN-13: | 9783827414922 |
ISBN-10: | 382741492X |
Sprache: | Deutsch |
Herstellernummer: | 12154111 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Aulbach, Bernd |
Auflage: | 2. Aufl. 2004 |
Hersteller: | Spektrum Akademischer Verlag |
Maße: | 240 x 168 x 25 mm |
Von/Mit: | Bernd Aulbach |
Erscheinungsdatum: | 24.05.2004 |
Gewicht: | 0,753 kg |