Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
235,39 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a ¿fourth leg¿¿ toour toolkit to make the ¿Materials Genome'' a reality, the science of Materials Informatics.
This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a ¿fourth leg¿¿ toour toolkit to make the ¿Materials Genome'' a reality, the science of Materials Informatics.
Zusammenfassung
One of the first books on materials discovery strategy
Emphasizes the paradigm of codesign
Brings together diverse expertise to improve the model for materials discovery
Includes supplementary material: [...]
Inhaltsverzeichnis
From the Contents: Introduction.- Data-Driven Discovery of Physical, Chemical, and Pharmaceutical Materials.- Cross-Validation and Inference in Bioinformatics/Cancer Genomics.- Applying MQSPRs - New Challenges and Opportunities.
Details
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Springer Series in Materials Science |
Inhalt: |
xvii
307 S. 46 s/w Illustr. 88 farbige Illustr. 307 p. 134 illus. 88 illus. in color. |
ISBN-13: | 9783319238708 |
ISBN-10: | 3319238701 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-23870-8 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Lookman, Turab
Rajan, Krishna Alexander, Francis J. |
Herausgeber: | Turab Lookman/Francis J Alexander/Krishna Rajan |
Auflage: | 1st ed. 2016 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing Springer International Publishing AG Springer Series in Materials Science |
Maße: | 241 x 160 x 24 mm |
Von/Mit: | Turab Lookman (u. a.) |
Erscheinungsdatum: | 28.12.2015 |
Gewicht: | 0,658 kg |
Zusammenfassung
One of the first books on materials discovery strategy
Emphasizes the paradigm of codesign
Brings together diverse expertise to improve the model for materials discovery
Includes supplementary material: [...]
Inhaltsverzeichnis
From the Contents: Introduction.- Data-Driven Discovery of Physical, Chemical, and Pharmaceutical Materials.- Cross-Validation and Inference in Bioinformatics/Cancer Genomics.- Applying MQSPRs - New Challenges and Opportunities.
Details
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Springer Series in Materials Science |
Inhalt: |
xvii
307 S. 46 s/w Illustr. 88 farbige Illustr. 307 p. 134 illus. 88 illus. in color. |
ISBN-13: | 9783319238708 |
ISBN-10: | 3319238701 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-23870-8 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Lookman, Turab
Rajan, Krishna Alexander, Francis J. |
Herausgeber: | Turab Lookman/Francis J Alexander/Krishna Rajan |
Auflage: | 1st ed. 2016 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing Springer International Publishing AG Springer Series in Materials Science |
Maße: | 241 x 160 x 24 mm |
Von/Mit: | Turab Lookman (u. a.) |
Erscheinungsdatum: | 28.12.2015 |
Gewicht: | 0,658 kg |
Warnhinweis