Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Introduction to Time Series and Forecasting
Taschenbuch von Richard A. Davis (u. a.)
Sprache: Englisch

80,45 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Kategorien:
Beschreibung
Some of the key mathematical results are stated without proof in order to make the underlying theory accessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and nonstationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area.
The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introductions are also given to cointegration and to nonlinear, continuous-time and long-memory models.
The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
Some of the key mathematical results are stated without proof in order to make the underlying theory accessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and nonstationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area.
The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introductions are also given to cointegration and to nonlinear, continuous-time and long-memory models.
The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
Über den Autor
Zusammenfassung
This book is aimed at the reader who wishes to gain a working knowldege of time series and forecasting methods as applied in economics, engineering, and the natural and social sciences.
Inhaltsverzeichnis
Stationary Processes.- ARMA Models.- Spectral Analysis.- Modeling and Forecasting with ARMA Processes.- Nonstationary and Seasonal Time Series Models.- Multivariate Time Series.- State-Space Models.- Forecasting Techniques.- Further Topics.- Erratum.
Details
Erscheinungsjahr: 2013
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Springer Texts in Statistics
Inhalt: xiv
437 S.
10 s/w Illustr.
ISBN-13: 9781475777505
ISBN-10: 1475777507
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Davis, Richard A.
Brockwell, Peter J.
Auflage: 2nd ed. 2002. Softcover reprint of the original 2nd ed. 2002
Hersteller: Springer New York
Springer US, New York, N.Y.
Springer Texts in Statistics
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 279 x 210 x 25 mm
Von/Mit: Richard A. Davis (u. a.)
Erscheinungsdatum: 23.04.2013
Gewicht: 1,093 kg
Artikel-ID: 105651227
Über den Autor
Zusammenfassung
This book is aimed at the reader who wishes to gain a working knowldege of time series and forecasting methods as applied in economics, engineering, and the natural and social sciences.
Inhaltsverzeichnis
Stationary Processes.- ARMA Models.- Spectral Analysis.- Modeling and Forecasting with ARMA Processes.- Nonstationary and Seasonal Time Series Models.- Multivariate Time Series.- State-Space Models.- Forecasting Techniques.- Further Topics.- Erratum.
Details
Erscheinungsjahr: 2013
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Springer Texts in Statistics
Inhalt: xiv
437 S.
10 s/w Illustr.
ISBN-13: 9781475777505
ISBN-10: 1475777507
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Davis, Richard A.
Brockwell, Peter J.
Auflage: 2nd ed. 2002. Softcover reprint of the original 2nd ed. 2002
Hersteller: Springer New York
Springer US, New York, N.Y.
Springer Texts in Statistics
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 279 x 210 x 25 mm
Von/Mit: Richard A. Davis (u. a.)
Erscheinungsdatum: 23.04.2013
Gewicht: 1,093 kg
Artikel-ID: 105651227
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte