114,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
provides an overview of the latest developments concerning the moduli of K3
surfaces. It is aimed at algebraic geometers, but is also of interest to number
theorists and theoretical physicists, and continues the tradition of related
volumes like ¿The Moduli Space of Curves¿ and ¿Moduli of Abelian Varieties,¿
which originated from conferences on the islands Texel and Schiermonnikoog and
which have become classics.
K3 surfaces
and their moduli form a central topic in algebraic geometry and arithmetic
geometry, and have recently attracted a lot of attention from both
mathematicians and theoretical physicists. Advances in this field often result
from mixing sophisticated techniques from algebraic geometry, lattice theory,
number theory, and dynamical systems. The topic has received significant
impetus due to recent breakthroughs on the Tate conjecture, the study of
stability conditions and derived categories, and links with mirror symmetry and
string theory. At the sametime, the theory of irreducible holomorphic
symplectic varieties, the higher dimensional analogues of K3 surfaces, has
become a mainstream topic in algebraic geometry.
Contributors:
S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman,
K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M.
Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I.
Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.
provides an overview of the latest developments concerning the moduli of K3
surfaces. It is aimed at algebraic geometers, but is also of interest to number
theorists and theoretical physicists, and continues the tradition of related
volumes like ¿The Moduli Space of Curves¿ and ¿Moduli of Abelian Varieties,¿
which originated from conferences on the islands Texel and Schiermonnikoog and
which have become classics.
K3 surfaces
and their moduli form a central topic in algebraic geometry and arithmetic
geometry, and have recently attracted a lot of attention from both
mathematicians and theoretical physicists. Advances in this field often result
from mixing sophisticated techniques from algebraic geometry, lattice theory,
number theory, and dynamical systems. The topic has received significant
impetus due to recent breakthroughs on the Tate conjecture, the study of
stability conditions and derived categories, and links with mirror symmetry and
string theory. At the sametime, the theory of irreducible holomorphic
symplectic varieties, the higher dimensional analogues of K3 surfaces, has
become a mainstream topic in algebraic geometry.
Contributors:
S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman,
K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M.
Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I.
Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.
unique and up-to-date source on the developments in this very active and
Connects to
other current topics: the study of derived categories and stability conditions,
Gromov-Witten theory, and dynamical systems
Complements related volumes like "The Moduli Space of Curves" and "Moduli of Abelian Varieties" that have become classics
Introduction.-
Samuel Boissière, Andrea Cattaneo, Marc
Nieper-Wisskirchen, and Alessandra Sarti: The automorphism group of the
Hilbert scheme of two points on a generic projective K3 surface.- Igor Dolgachev: Orbital counting of
curves on algebraic surfaces and sphere packings.- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces.- Brendan Hassett and Yuri Tschinkel: Extremal
rays and automorphisms of holomorphic symplectic varieties.- Gert Heckman and Sander Rieken: An odd
presentation for W(E_6).- S. Katz, A.
Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On the
motivic stable pairs invariants of K3 surfaces.- Shigeyuki Kondö: The Igusa quartic and Borcherds products.- Christian Liedtke: Lectures on
supersingular K3 surfaces and the crystalline Torelli theorem.- Daisuke Matsushita: On deformations of
Lagrangian fibrations.- G. Oberdieck and
R. Pandharipande: Curve counting on K3 x E,the Igusa cusp form X_10, and
descendent integration.- Keiji Oguiso:
Simple abelian varieties and primitive automorphisms of null entropy of
surfaces.- Ichiro Shimada: The
automorphism groups of certain singular K3 surfaces and an Enriques surface.- Alessandro Verra: Geometry of genus 8
Nikulin surfaces and rationality of their moduli.- Claire Voisin: Remarks and questions on coisotropic subvarieties
and 0-cycles of hyper-Kähler varieties.
Erscheinungsjahr: | 2016 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Progress in Mathematics |
Inhalt: |
ix
399 S. 11 s/w Illustr. 3 farbige Illustr. 399 p. 14 illus. 3 illus. in color. |
ISBN-13: | 9783319299587 |
ISBN-10: | 3319299581 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-29958-7 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Faber, Carel
Geer, Gerard Van Der Farkas, Gavril |
Herausgeber: | Carel Faber/Gavril Farkas/Gerard van der Geer |
Auflage: | 1st ed. 2016 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing Springer International Publishing AG Progress in Mathematics |
Verantwortliche Person für die EU: | Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 28 mm |
Von/Mit: | Carel Faber (u. a.) |
Erscheinungsdatum: | 03.05.2016 |
Gewicht: | 0,781 kg |
unique and up-to-date source on the developments in this very active and
Connects to
other current topics: the study of derived categories and stability conditions,
Gromov-Witten theory, and dynamical systems
Complements related volumes like "The Moduli Space of Curves" and "Moduli of Abelian Varieties" that have become classics
Introduction.-
Samuel Boissière, Andrea Cattaneo, Marc
Nieper-Wisskirchen, and Alessandra Sarti: The automorphism group of the
Hilbert scheme of two points on a generic projective K3 surface.- Igor Dolgachev: Orbital counting of
curves on algebraic surfaces and sphere packings.- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces.- Brendan Hassett and Yuri Tschinkel: Extremal
rays and automorphisms of holomorphic symplectic varieties.- Gert Heckman and Sander Rieken: An odd
presentation for W(E_6).- S. Katz, A.
Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On the
motivic stable pairs invariants of K3 surfaces.- Shigeyuki Kondö: The Igusa quartic and Borcherds products.- Christian Liedtke: Lectures on
supersingular K3 surfaces and the crystalline Torelli theorem.- Daisuke Matsushita: On deformations of
Lagrangian fibrations.- G. Oberdieck and
R. Pandharipande: Curve counting on K3 x E,the Igusa cusp form X_10, and
descendent integration.- Keiji Oguiso:
Simple abelian varieties and primitive automorphisms of null entropy of
surfaces.- Ichiro Shimada: The
automorphism groups of certain singular K3 surfaces and an Enriques surface.- Alessandro Verra: Geometry of genus 8
Nikulin surfaces and rationality of their moduli.- Claire Voisin: Remarks and questions on coisotropic subvarieties
and 0-cycles of hyper-Kähler varieties.
Erscheinungsjahr: | 2016 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Progress in Mathematics |
Inhalt: |
ix
399 S. 11 s/w Illustr. 3 farbige Illustr. 399 p. 14 illus. 3 illus. in color. |
ISBN-13: | 9783319299587 |
ISBN-10: | 3319299581 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-29958-7 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Faber, Carel
Geer, Gerard Van Der Farkas, Gavril |
Herausgeber: | Carel Faber/Gavril Farkas/Gerard van der Geer |
Auflage: | 1st ed. 2016 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing Springer International Publishing AG Progress in Mathematics |
Verantwortliche Person für die EU: | Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 28 mm |
Von/Mit: | Carel Faber (u. a.) |
Erscheinungsdatum: | 03.05.2016 |
Gewicht: | 0,781 kg |