Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Lagrangian Optics
Buch von V. Lakshminarayanan (u. a.)
Sprache: Englisch

91,40 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the current interest and activity in optical fibers and optical communication, analysis of light propagation in inhomogeneous media is dealt with in great detail. The past decade has witnessed great advances in adaptive optics and compensation for optical aberrations. The formalism described herein can be used to calculate aberrations ofoptical systems. Toward the end of the book, we present application of the formalism to current research problems. Of particular interest is the use of dynamic programming techniques which can be used to handle variational/extremum problems. This method has only recently been applied to opticalproblems.
Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the current interest and activity in optical fibers and optical communication, analysis of light propagation in inhomogeneous media is dealt with in great detail. The past decade has witnessed great advances in adaptive optics and compensation for optical aberrations. The formalism described herein can be used to calculate aberrations ofoptical systems. Toward the end of the book, we present application of the formalism to current research problems. Of particular interest is the use of dynamic programming techniques which can be used to handle variational/extremum problems. This method has only recently been applied to opticalproblems.
Inhaltsverzeichnis
Preface.- 1: Introduction.- 2: Fermat's Principle.- 3: The Optical Lagrangian and the Ray Equation.- 4: Ray Paths in Media With Spherical and Cylindrical Symmetry.- 5: Ray Paths in Bent Waveguides.- 6: The Optical Hamiltonian nd Study of Paraxial Lens Optics.- 7: Geometrical Theory of Third-Order Aberrations.- 8: An Introduction to Lie Algebraic Treatment of Optical Aberrations.- 9: An Introduction To Dynamic Programming and Applications to Optics.- Appendix A: Geometric Optics Approximation and the Eikonal Equation.- Appendix B: Fermat's Priniciple for a General Medium of Arbitrary Anisotropy.- Appendix C: Ray Propogation and Symplectic Transformations.- Index:.
Details
Erscheinungsjahr: 2001
Fachbereich: Elektrizität/Magnetismus/Optik
Genre: Importe, Physik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: x
227 S.
ISBN-13: 9780792375821
ISBN-10: 0792375823
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Lakshminarayanan, V.
Thyagarajan, K.
Ghatak, Ajoy
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 21 mm
Von/Mit: V. Lakshminarayanan (u. a.)
Erscheinungsdatum: 30.11.2001
Gewicht: 0,53 kg
Artikel-ID: 102593140
Inhaltsverzeichnis
Preface.- 1: Introduction.- 2: Fermat's Principle.- 3: The Optical Lagrangian and the Ray Equation.- 4: Ray Paths in Media With Spherical and Cylindrical Symmetry.- 5: Ray Paths in Bent Waveguides.- 6: The Optical Hamiltonian nd Study of Paraxial Lens Optics.- 7: Geometrical Theory of Third-Order Aberrations.- 8: An Introduction to Lie Algebraic Treatment of Optical Aberrations.- 9: An Introduction To Dynamic Programming and Applications to Optics.- Appendix A: Geometric Optics Approximation and the Eikonal Equation.- Appendix B: Fermat's Priniciple for a General Medium of Arbitrary Anisotropy.- Appendix C: Ray Propogation and Symplectic Transformations.- Index:.
Details
Erscheinungsjahr: 2001
Fachbereich: Elektrizität/Magnetismus/Optik
Genre: Importe, Physik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: x
227 S.
ISBN-13: 9780792375821
ISBN-10: 0792375823
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Lakshminarayanan, V.
Thyagarajan, K.
Ghatak, Ajoy
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 21 mm
Von/Mit: V. Lakshminarayanan (u. a.)
Erscheinungsdatum: 30.11.2001
Gewicht: 0,53 kg
Artikel-ID: 102593140
Sicherheitshinweis