Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
149,79 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Inhaltsverzeichnis
Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k-nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k-nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP-consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.
Details
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Springer Series in the Data Sciences |
Inhalt: |
ix
290 S. 4 farbige Illustr. 290 p. 4 illus. in color. |
ISBN-13: | 9783319253862 |
ISBN-10: | 3319253867 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Devroye, Luc
Biau, Gérard |
Auflage: | 1st ed. 2015 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing Springer International Publishing AG Springer Series in the Data Sciences |
Maße: | 241 x 160 x 22 mm |
Von/Mit: | Luc Devroye (u. a.) |
Erscheinungsdatum: | 15.12.2015 |
Gewicht: | 0,617 kg |
Inhaltsverzeichnis
Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k-nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k-nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP-consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.
Details
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Springer Series in the Data Sciences |
Inhalt: |
ix
290 S. 4 farbige Illustr. 290 p. 4 illus. in color. |
ISBN-13: | 9783319253862 |
ISBN-10: | 3319253867 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Devroye, Luc
Biau, Gérard |
Auflage: | 1st ed. 2015 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing Springer International Publishing AG Springer Series in the Data Sciences |
Maße: | 241 x 160 x 22 mm |
Von/Mit: | Luc Devroye (u. a.) |
Erscheinungsdatum: | 15.12.2015 |
Gewicht: | 0,617 kg |
Warnhinweis