Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Lie Algebras and Lie Groups
1964 Lectures given at Harvard University
Taschenbuch von Jean-Pierre Serre
Sprache: Englisch

49,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I. I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups. of time prevented me from including the more precise theory of Lack semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a last Chapter, the typical case ofal,.. This part has been written with the help of [...] and [...]. I want to thank them, and also Sue Golan, who did the typing for both parts. Jean-Pierre Serre Harvard, Fall 1964 Chapter I. Lie Algebras: Definition and Examples Let Ie be a commutativering with unit element, and let A be a k-module, then A is said to be a Ie-algebra if there is given a k-bilinear map A x A~ A (i.e., a k-homomorphism A0" A -+ A). As usual we may define left, right and two-sided ideals and therefore quo tients. Definition 1. A Lie algebra over Ie isan algebrawith the following properties: 1). The map A0i A -+ A admits a factorization A ®i A -+ A2A -+ A i.e., ifwe denote the imageof(x,y) under this map by [x,y) then the condition becomes for all x e k. [x,x)=0 2). (lx,II], z]+ny, z), x) + ([z,xl, til = 0 (Jacobi's identity) The condition 1) implies [x,1/]=-[1/,x).
The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I. I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups. of time prevented me from including the more precise theory of Lack semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a last Chapter, the typical case ofal,.. This part has been written with the help of [...] and [...]. I want to thank them, and also Sue Golan, who did the typing for both parts. Jean-Pierre Serre Harvard, Fall 1964 Chapter I. Lie Algebras: Definition and Examples Let Ie be a commutativering with unit element, and let A be a k-module, then A is said to be a Ie-algebra if there is given a k-bilinear map A x A~ A (i.e., a k-homomorphism A0" A -+ A). As usual we may define left, right and two-sided ideals and therefore quo tients. Definition 1. A Lie algebra over Ie isan algebrawith the following properties: 1). The map A0i A -+ A admits a factorization A ®i A -+ A2A -+ A i.e., ifwe denote the imageof(x,y) under this map by [x,y) then the condition becomes for all x e k. [x,x)=0 2). (lx,II], z]+ny, z), x) + ([z,xl, til = 0 (Jacobi's identity) The condition 1) implies [x,1/]=-[1/,x).
Inhaltsverzeichnis
Lie Algebras.- Lie Algebras: Definition and Examples.- Filtered Groups and Lie Algebras.- Universal Algebra of a Lie Algebra.- Free Lie Algebras.- Nilpotent and Solvable Lie Algebras.- Semisimple Lie Algebras.- Representations of .- Lie Groups.- Complete Fields.- Analytic Functions.- Analytic Manifolds.- Analytic Groups.- Lie Theory.
Details
Erscheinungsjahr: 1992
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: vii
173 S.
ISBN-13: 9783540550082
ISBN-10: 3540550089
Sprache: Englisch
Herstellernummer: 978-3-540-55008-2
Autor: Serre, Jean-Pierre
Auflage: 2nd ed. Corr. pr.
Hersteller: Springer
Springer, Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Abbildungen: VII, 173 p.
Maße: 241 x 168 x 11 mm
Von/Mit: Jean-Pierre Serre
Erscheinungsdatum: 11.03.1992
Gewicht: 0,328 kg
Artikel-ID: 102135703
Inhaltsverzeichnis
Lie Algebras.- Lie Algebras: Definition and Examples.- Filtered Groups and Lie Algebras.- Universal Algebra of a Lie Algebra.- Free Lie Algebras.- Nilpotent and Solvable Lie Algebras.- Semisimple Lie Algebras.- Representations of .- Lie Groups.- Complete Fields.- Analytic Functions.- Analytic Manifolds.- Analytic Groups.- Lie Theory.
Details
Erscheinungsjahr: 1992
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: vii
173 S.
ISBN-13: 9783540550082
ISBN-10: 3540550089
Sprache: Englisch
Herstellernummer: 978-3-540-55008-2
Autor: Serre, Jean-Pierre
Auflage: 2nd ed. Corr. pr.
Hersteller: Springer
Springer, Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Abbildungen: VII, 173 p.
Maße: 241 x 168 x 11 mm
Von/Mit: Jean-Pierre Serre
Erscheinungsdatum: 11.03.1992
Gewicht: 0,328 kg
Artikel-ID: 102135703
Sicherheitshinweis