Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
70,20 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environmentsKey FeaturesExplore hyperparameter optimization and model management tools
Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages
Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases
Book Description
Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services.
Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems.
By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning [...] you will learnFind out what an effective ML engineering process looks like
Uncover options for automating training and deployment and learn how to use them
Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions
Understand what aspects of software engineering you can bring to machine learning
Gain insights into adapting software engineering for machine learning using appropriate cloud technologies
Perform hyperparameter tuning in a relatively automated way
Who this book is for
This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is [...] of ContentsIntroduction to ML Engineering
The Machine Learning Development Process
From Model to Model Factory
Packaging Up
Deployment Patterns and Tools
Scaling Up
Building an Example ML Microservice
Building an Extract Transform Machine Learning Use Case
Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages
Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases
Book Description
Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services.
Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems.
By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning [...] you will learnFind out what an effective ML engineering process looks like
Uncover options for automating training and deployment and learn how to use them
Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions
Understand what aspects of software engineering you can bring to machine learning
Gain insights into adapting software engineering for machine learning using appropriate cloud technologies
Perform hyperparameter tuning in a relatively automated way
Who this book is for
This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is [...] of ContentsIntroduction to ML Engineering
The Machine Learning Development Process
From Model to Model Factory
Packaging Up
Deployment Patterns and Tools
Scaling Up
Building an Example ML Microservice
Building an Extract Transform Machine Learning Use Case
Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environmentsKey FeaturesExplore hyperparameter optimization and model management tools
Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages
Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases
Book Description
Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services.
Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems.
By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning [...] you will learnFind out what an effective ML engineering process looks like
Uncover options for automating training and deployment and learn how to use them
Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions
Understand what aspects of software engineering you can bring to machine learning
Gain insights into adapting software engineering for machine learning using appropriate cloud technologies
Perform hyperparameter tuning in a relatively automated way
Who this book is for
This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is [...] of ContentsIntroduction to ML Engineering
The Machine Learning Development Process
From Model to Model Factory
Packaging Up
Deployment Patterns and Tools
Scaling Up
Building an Example ML Microservice
Building an Extract Transform Machine Learning Use Case
Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages
Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases
Book Description
Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services.
Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems.
By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning [...] you will learnFind out what an effective ML engineering process looks like
Uncover options for automating training and deployment and learn how to use them
Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions
Understand what aspects of software engineering you can bring to machine learning
Gain insights into adapting software engineering for machine learning using appropriate cloud technologies
Perform hyperparameter tuning in a relatively automated way
Who this book is for
This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is [...] of ContentsIntroduction to ML Engineering
The Machine Learning Development Process
From Model to Model Factory
Packaging Up
Deployment Patterns and Tools
Scaling Up
Building an Example ML Microservice
Building an Extract Transform Machine Learning Use Case
Über den Autor
Andrew P. McMahon has spent years building high-impact ML products across a variety of industries. He is currently Head of MLOps for NatWest Group in the UK and has a PhD in theoretical condensed matter physics from Imperial College London. He is an active blogger, speaker, podcast guest, and leading voice in the MLOps community. He is co-host of the AI Right podcast and was named 'Rising Star of the Year' at the 2022 British Data Awards and 'Data Scientist of the Year' by the Data Science Foundation in 2019.
Details
Erscheinungsjahr: | 2021 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781801079259 |
ISBN-10: | 1801079250 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | McMahon, Andrew P. |
Hersteller: | Packt Publishing |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 235 x 191 x 15 mm |
Von/Mit: | Andrew P. McMahon |
Erscheinungsdatum: | 05.11.2021 |
Gewicht: | 0,521 kg |
Über den Autor
Andrew P. McMahon has spent years building high-impact ML products across a variety of industries. He is currently Head of MLOps for NatWest Group in the UK and has a PhD in theoretical condensed matter physics from Imperial College London. He is an active blogger, speaker, podcast guest, and leading voice in the MLOps community. He is co-host of the AI Right podcast and was named 'Rising Star of the Year' at the 2022 British Data Awards and 'Data Scientist of the Year' by the Data Science Foundation in 2019.
Details
Erscheinungsjahr: | 2021 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781801079259 |
ISBN-10: | 1801079250 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | McMahon, Andrew P. |
Hersteller: | Packt Publishing |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 235 x 191 x 15 mm |
Von/Mit: | Andrew P. McMahon |
Erscheinungsdatum: | 05.11.2021 |
Gewicht: | 0,521 kg |
Sicherheitshinweis