Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Machine Learning Refined
Buch von Jeremy Watt
Sprache: Englisch

84,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Noch keine Beschreibung vorhanden. Sollten Sie Fragen zu dem Artikel haben, helfen wir Ihnen gerne weiter.
Über den Autor
Jeremy Watt received his Ph.D. in Electrical Engineering from Northwestern University, Illinois, and is now a machine learning consultant and educator. He teaches machine learning, deep learning, mathematical optimization, and reinforcement learning at Northwestern University, Illinois.
Inhaltsverzeichnis
1. Introduction to machine learning; Part I. Mathematical Optimization: 2. Zero order optimization techniques; 3. First order methods; 4. Second order optimization techniques; Part II. Linear Learning: 5. Linear regression; 6. Linear two-class classification; 7. Linear multi-class classification; 8. Linear unsupervised learning; 9. Feature engineering and selection; Part III. Nonlinear Learning: 10. Principles of nonlinear feature engineering; 11. Principles of feature learning; 12. Kernel methods; 13. Fully-connected neural networks; 14. Tree-based learners; Part IV. Appendices: Appendix A. Advanced first and second order optimization methods; Appendix B. Derivatives and automatic differentiation; Appendix C. Linear algebra.
Details
Erscheinungsjahr: 2020
Fachbereich: Nachrichtentechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9781108480727
ISBN-10: 1108480721
Sprache: Englisch
Ausstattung / Beilage: HC gerader Rücken kaschiert
Einband: Gebunden
Autor: Watt, Jeremy
Hersteller: Cambridge University Press
Maße: 250 x 175 x 36 mm
Von/Mit: Jeremy Watt
Erscheinungsdatum: 09.01.2020
Gewicht: 1,199 kg
Artikel-ID: 116835049
Über den Autor
Jeremy Watt received his Ph.D. in Electrical Engineering from Northwestern University, Illinois, and is now a machine learning consultant and educator. He teaches machine learning, deep learning, mathematical optimization, and reinforcement learning at Northwestern University, Illinois.
Inhaltsverzeichnis
1. Introduction to machine learning; Part I. Mathematical Optimization: 2. Zero order optimization techniques; 3. First order methods; 4. Second order optimization techniques; Part II. Linear Learning: 5. Linear regression; 6. Linear two-class classification; 7. Linear multi-class classification; 8. Linear unsupervised learning; 9. Feature engineering and selection; Part III. Nonlinear Learning: 10. Principles of nonlinear feature engineering; 11. Principles of feature learning; 12. Kernel methods; 13. Fully-connected neural networks; 14. Tree-based learners; Part IV. Appendices: Appendix A. Advanced first and second order optimization methods; Appendix B. Derivatives and automatic differentiation; Appendix C. Linear algebra.
Details
Erscheinungsjahr: 2020
Fachbereich: Nachrichtentechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9781108480727
ISBN-10: 1108480721
Sprache: Englisch
Ausstattung / Beilage: HC gerader Rücken kaschiert
Einband: Gebunden
Autor: Watt, Jeremy
Hersteller: Cambridge University Press
Maße: 250 x 175 x 36 mm
Von/Mit: Jeremy Watt
Erscheinungsdatum: 09.01.2020
Gewicht: 1,199 kg
Artikel-ID: 116835049
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte