181,89 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Develops a new paradigm and way of thinking how data science can guide materials discoveries
Describes information-theoretic tools and their application to materials science
Covers both analysis and processing of large scale computational and experimental data in materials science
With contributions from an interdisciplinary group of experts in the field
Part 1: Learning from Data in Material Science.- Designing Novel Multifunctional Materials via Inverse Optimization Techniques.- Quantifying Uncertainties in First Principles Alloy Thermodynamics.- Forward Modeling of Electron Scattering Modalities for Microstructure Quantification.- The Potential of Network Analysis Strategies to HEDM Data: Classification of Microstructures and Prediction of Incipient Failure.- Part 2: Data and Inference.- Challenges of Diagram extraction and Understanding.- Integration of Computational Reasoning, Machine Learning, and Crowdsourcing for Accelerating Materials Discovery.- Computational Creativity for Materials Science.- Optimal Experimental Design Based on Uncertainty Quantification.- Part 3: High-Throughput Calculations and Experiments Functionality-Driven Design and Discovery.- The Use of Proxies and Data for Guiding Materials Synthesis: Examples of Phosphors and Thermoelectrics.- Big Data from Experiments.- Data-Driven Approaches to Combinatorial Materials Science.- Invariant Representations for Robust Materials Prediction.- Part 4: Data Optimization/Challenges in Analysis of Data for Facilities.- The MGI Data Infrastructure.- Is Rigorous Automated Materials Design and Discovery Possible?.- Improve your Monte Carlo: Learn a Control Variate and Correct it with Stacking.- X-ray Free Electron Laser Studies of Shock-Driven Deformation and Phase Transitions.- Coherent Diffraction Imaging Techniques at 3rd and 4th Generation Light Sources.- 3D Data Challenges from X-ray Synchrotron Tomography.- Part 5: Interference/HPC/Software Integration.- Optimal Bayesian Experimental Design: Formulations and New Computational Strategies.- Optimal Bayesian Inference with Missing Data.- Applying an Experimental Design Loop to Shape Memory Alloys.- Big Data Need Big Theory Too.- Combining Experiments, Simulation and Machine Learning in a Single Materials Platform - A Materials Informatics Approach.- Rethinking the HPC Programming Environment.
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Astronomie |
Genre: | Physik |
Rubrik: | Naturwissenschaften & Technik |
Thema: | Lexika |
Medium: | Buch |
Reihe: | Springer Series in Materials Science |
Inhalt: |
xvi
256 S. 10 s/w Illustr. 88 farbige Illustr. 256 p. 98 illus. 88 illus. in color. |
ISBN-13: | 9783319994642 |
ISBN-10: | 3319994646 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-99464-2 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Lookman, Turab
Barnes, Cris Alexander, Frank Eidenbenz, Stephan |
Herausgeber: | Turab Lookman/Stephan Eidenbenz/Frank Alexander et al |
Auflage: | 1st ed. 2018 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Series in Materials Science |
Maße: | 241 x 160 x 21 mm |
Von/Mit: | Turab Lookman (u. a.) |
Erscheinungsdatum: | 04.10.2018 |
Gewicht: | 0,576 kg |
Develops a new paradigm and way of thinking how data science can guide materials discoveries
Describes information-theoretic tools and their application to materials science
Covers both analysis and processing of large scale computational and experimental data in materials science
With contributions from an interdisciplinary group of experts in the field
Part 1: Learning from Data in Material Science.- Designing Novel Multifunctional Materials via Inverse Optimization Techniques.- Quantifying Uncertainties in First Principles Alloy Thermodynamics.- Forward Modeling of Electron Scattering Modalities for Microstructure Quantification.- The Potential of Network Analysis Strategies to HEDM Data: Classification of Microstructures and Prediction of Incipient Failure.- Part 2: Data and Inference.- Challenges of Diagram extraction and Understanding.- Integration of Computational Reasoning, Machine Learning, and Crowdsourcing for Accelerating Materials Discovery.- Computational Creativity for Materials Science.- Optimal Experimental Design Based on Uncertainty Quantification.- Part 3: High-Throughput Calculations and Experiments Functionality-Driven Design and Discovery.- The Use of Proxies and Data for Guiding Materials Synthesis: Examples of Phosphors and Thermoelectrics.- Big Data from Experiments.- Data-Driven Approaches to Combinatorial Materials Science.- Invariant Representations for Robust Materials Prediction.- Part 4: Data Optimization/Challenges in Analysis of Data for Facilities.- The MGI Data Infrastructure.- Is Rigorous Automated Materials Design and Discovery Possible?.- Improve your Monte Carlo: Learn a Control Variate and Correct it with Stacking.- X-ray Free Electron Laser Studies of Shock-Driven Deformation and Phase Transitions.- Coherent Diffraction Imaging Techniques at 3rd and 4th Generation Light Sources.- 3D Data Challenges from X-ray Synchrotron Tomography.- Part 5: Interference/HPC/Software Integration.- Optimal Bayesian Experimental Design: Formulations and New Computational Strategies.- Optimal Bayesian Inference with Missing Data.- Applying an Experimental Design Loop to Shape Memory Alloys.- Big Data Need Big Theory Too.- Combining Experiments, Simulation and Machine Learning in a Single Materials Platform - A Materials Informatics Approach.- Rethinking the HPC Programming Environment.
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Astronomie |
Genre: | Physik |
Rubrik: | Naturwissenschaften & Technik |
Thema: | Lexika |
Medium: | Buch |
Reihe: | Springer Series in Materials Science |
Inhalt: |
xvi
256 S. 10 s/w Illustr. 88 farbige Illustr. 256 p. 98 illus. 88 illus. in color. |
ISBN-13: | 9783319994642 |
ISBN-10: | 3319994646 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-99464-2 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Lookman, Turab
Barnes, Cris Alexander, Frank Eidenbenz, Stephan |
Herausgeber: | Turab Lookman/Stephan Eidenbenz/Frank Alexander et al |
Auflage: | 1st ed. 2018 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Series in Materials Science |
Maße: | 241 x 160 x 21 mm |
Von/Mit: | Turab Lookman (u. a.) |
Erscheinungsdatum: | 04.10.2018 |
Gewicht: | 0,576 kg |