59,45 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H¿-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier¿Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier¿Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier¿Stokes equations with and without surface tension.
Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier¿Stokes equations.
The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H¿-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier¿Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier¿Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier¿Stokes equations with and without surface tension.
Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier¿Stokes equations.
Provides an accessible introduction to the basic results and major open questions related to the Navier-Stokes initial-value problem
Gives applications to difficult and still unresolved questions, like free boundary problems
Describes the general theory of R-boundedness and maximal regularity for quasilinear evolution equations in Banach spaces
Giovanni P. Galdi, Yoshihiro Shibata: Preface.- Matthias Hieber: Analysis of Viscous Fluid Flows: An Approach by Evolution Equations.- James C. Robinson: Partial regularity for the 3D Navier-Stokes equations.- Yoshihiro Shibata: R Boundedness, Maximal Regularity and Free Boundary Problems for the Navier Stokes Equations.
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
vii
464 S. 3 s/w Illustr. 464 p. 3 illus. |
ISBN-13: | 9783030362256 |
ISBN-10: | 3030362256 |
Sprache: | Englisch |
Herstellernummer: | 978-3-030-36225-6 |
Einband: | Kartoniert / Broschiert |
Autor: |
Hieber, Matthias
Robinson, James C. Shibata, Yoshihiro |
Redaktion: |
Galdi, Giovanni P.
Shibata, Yoshihiro |
Herausgeber: | Giovanni P Galdi/Yoshihiro Shibata |
Auflage: | 1st edition 2020 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 26 mm |
Von/Mit: | Matthias Hieber (u. a.) |
Erscheinungsdatum: | 29.04.2020 |
Gewicht: | 0,709 kg |
Provides an accessible introduction to the basic results and major open questions related to the Navier-Stokes initial-value problem
Gives applications to difficult and still unresolved questions, like free boundary problems
Describes the general theory of R-boundedness and maximal regularity for quasilinear evolution equations in Banach spaces
Giovanni P. Galdi, Yoshihiro Shibata: Preface.- Matthias Hieber: Analysis of Viscous Fluid Flows: An Approach by Evolution Equations.- James C. Robinson: Partial regularity for the 3D Navier-Stokes equations.- Yoshihiro Shibata: R Boundedness, Maximal Regularity and Free Boundary Problems for the Navier Stokes Equations.
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
vii
464 S. 3 s/w Illustr. 464 p. 3 illus. |
ISBN-13: | 9783030362256 |
ISBN-10: | 3030362256 |
Sprache: | Englisch |
Herstellernummer: | 978-3-030-36225-6 |
Einband: | Kartoniert / Broschiert |
Autor: |
Hieber, Matthias
Robinson, James C. Shibata, Yoshihiro |
Redaktion: |
Galdi, Giovanni P.
Shibata, Yoshihiro |
Herausgeber: | Giovanni P Galdi/Yoshihiro Shibata |
Auflage: | 1st edition 2020 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 26 mm |
Von/Mit: | Matthias Hieber (u. a.) |
Erscheinungsdatum: | 29.04.2020 |
Gewicht: | 0,709 kg |