Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Mathematik für Informatik und Data Science
Eine fundierte Einführung in Logik, Analysis, Lineare Algebra und Stochastik für Künstliche Intelligenz und...
Taschenbuch von Andreas Knoblauch
Sprache: Deutsch

44,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung

Dieses Buch liefert eine kompakte aber fundierte Darstellung der wichtigsten Gebiete der Mathematik für Informatik, die insbesondere für Data Science, Künstliche Intelligenz und Maschinelles Lernen notwendig sind. Inhaltlich gehören dazu Grundlagen zu Logik und Beweisen, ein- und mehrdimensionale Analysis mit Differential- und Integralrechnung, Lineare Algebra mit Vektor- und Matrixrechnung, linearen Gleichungssystemen, Koordinatentransformationen, Eigenvektoren sowie Wahrscheinlichkeitsrechnung mit Grundlagen der Kombinatorik, Statistik und Informationstheorie. Trotz der kompakten Darstellung werden alle Konzepte und Sätze sorgfältig eingeführt und bewiesen. Nichts soll vom Himmel fallen, sondern aus Axiomen und elementaren Prinzipien hergeleitet werden. Ziel ist es beim Studierenden das befriedigende Gefühl zu erzeugen, alles von Grund auf verstanden zu haben, und nichts nur "glauben" zu müssen.

Der Inhalt

  • Mathematische und logische Grundlagen
  • Rechnen in Körpern
  • Grenzwerte von Folgen und Reihen
  • Rationale Funktionen und Stetigkeit
  • Differentialrechnung
  • Integration
  • Die komplexe Exponentialfunktion und die trigonometrischen Funktionen
  • Vektorrechnung und Lineare Algebra
  • Fortgeschrittene Methoden der Linearen Algebra
  • Mehrdimensionale Differentialrechnung
  • Kombinatorik und Wahrscheinlichkeitsrechnung

Der Autor

Andreas Knoblauch ist Professor für Informatik an der Hochschule Albstadt-Sigmaringen. Er unterrichtet dort in den Studiengängen Technische Informatik, IT-Security, Wirtschaftsinformatik, Systems Engineering und Data Science unter anderem Mathematik, Intelligente Systeme, Maschinelles Lernen und Mustererkennung. Daneben forscht er im Bereich Bildverarbeitung, Objekterkennung, Neuronale Netze, Neuromorphe Assoziativspeicher und Selbstreferentielles Autonomes Lernen.

Dieses Buch liefert eine kompakte aber fundierte Darstellung der wichtigsten Gebiete der Mathematik für Informatik, die insbesondere für Data Science, Künstliche Intelligenz und Maschinelles Lernen notwendig sind. Inhaltlich gehören dazu Grundlagen zu Logik und Beweisen, ein- und mehrdimensionale Analysis mit Differential- und Integralrechnung, Lineare Algebra mit Vektor- und Matrixrechnung, linearen Gleichungssystemen, Koordinatentransformationen, Eigenvektoren sowie Wahrscheinlichkeitsrechnung mit Grundlagen der Kombinatorik, Statistik und Informationstheorie. Trotz der kompakten Darstellung werden alle Konzepte und Sätze sorgfältig eingeführt und bewiesen. Nichts soll vom Himmel fallen, sondern aus Axiomen und elementaren Prinzipien hergeleitet werden. Ziel ist es beim Studierenden das befriedigende Gefühl zu erzeugen, alles von Grund auf verstanden zu haben, und nichts nur "glauben" zu müssen.

Der Inhalt

  • Mathematische und logische Grundlagen
  • Rechnen in Körpern
  • Grenzwerte von Folgen und Reihen
  • Rationale Funktionen und Stetigkeit
  • Differentialrechnung
  • Integration
  • Die komplexe Exponentialfunktion und die trigonometrischen Funktionen
  • Vektorrechnung und Lineare Algebra
  • Fortgeschrittene Methoden der Linearen Algebra
  • Mehrdimensionale Differentialrechnung
  • Kombinatorik und Wahrscheinlichkeitsrechnung

Der Autor

Andreas Knoblauch ist Professor für Informatik an der Hochschule Albstadt-Sigmaringen. Er unterrichtet dort in den Studiengängen Technische Informatik, IT-Security, Wirtschaftsinformatik, Systems Engineering und Data Science unter anderem Mathematik, Intelligente Systeme, Maschinelles Lernen und Mustererkennung. Daneben forscht er im Bereich Bildverarbeitung, Objekterkennung, Neuronale Netze, Neuromorphe Assoziativspeicher und Selbstreferentielles Autonomes Lernen.

Ãœber den Autor

Andreas Knoblauch ist Professor für Informatik an der Hochschule Albstadt-Sigmaringen. Er unterrichtet dort in den Studiengängen Technische Informatik, IT-Security, Wirtschaftsinformatik, Systems Engineering und Data Science unter anderem Mathematik, Intelligente Systeme, Maschinelles Lernen und Mustererkennung. Daneben forscht er im Bereich Bildverarbeitung, Objekterkennung, Neuronale Netze, Neuromorphe Assoziativspeicher und Selbstreferentielles Autonomes Lernen.

Inhaltsverzeichnis

1. Mathematische und logische Grundlagen.- 2. Rechnen in Körpern.- 3. Grenzwerte von Folgen und Reihen.- 4. Rationale Funktionen und Stetigkeit.- 5. Differentialrechnung.- 6. Integration.- 7. Die komplexe Exponentialfunktion und die trigonometrischen Funktionen.- 8.Vektorrechnung und Lineare Algebra.- 9. Fortgeschrittene Methoden der Linearen Algebra.- 10. Mehrdimensionale Differentialrechnung.- 11. Kombinatorik und Wahrscheinlichkeitsrechnung.

Details
Erscheinungsjahr: 2024
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Titelzusatz: Eine fundierte Einführung in Logik, Analysis, Lineare Algebra und Stochastik für Künstliche Intelligenz und Maschinelles Lernen
Inhalt: xiii
439 S.
95 s/w Illustr.
439 S. 95 Abb.
ISBN-13: 9783662694787
ISBN-10: 3662694786
Sprache: Deutsch
Herstellernummer: 89290076
Einband: Kartoniert / Broschiert
Autor: Knoblauch, Andreas
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 240 x 168 x 25 mm
Von/Mit: Andreas Knoblauch
Erscheinungsdatum: 19.12.2024
Gewicht: 0,759 kg
Artikel-ID: 129096861
Ãœber den Autor

Andreas Knoblauch ist Professor für Informatik an der Hochschule Albstadt-Sigmaringen. Er unterrichtet dort in den Studiengängen Technische Informatik, IT-Security, Wirtschaftsinformatik, Systems Engineering und Data Science unter anderem Mathematik, Intelligente Systeme, Maschinelles Lernen und Mustererkennung. Daneben forscht er im Bereich Bildverarbeitung, Objekterkennung, Neuronale Netze, Neuromorphe Assoziativspeicher und Selbstreferentielles Autonomes Lernen.

Inhaltsverzeichnis

1. Mathematische und logische Grundlagen.- 2. Rechnen in Körpern.- 3. Grenzwerte von Folgen und Reihen.- 4. Rationale Funktionen und Stetigkeit.- 5. Differentialrechnung.- 6. Integration.- 7. Die komplexe Exponentialfunktion und die trigonometrischen Funktionen.- 8.Vektorrechnung und Lineare Algebra.- 9. Fortgeschrittene Methoden der Linearen Algebra.- 10. Mehrdimensionale Differentialrechnung.- 11. Kombinatorik und Wahrscheinlichkeitsrechnung.

Details
Erscheinungsjahr: 2024
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Titelzusatz: Eine fundierte Einführung in Logik, Analysis, Lineare Algebra und Stochastik für Künstliche Intelligenz und Maschinelles Lernen
Inhalt: xiii
439 S.
95 s/w Illustr.
439 S. 95 Abb.
ISBN-13: 9783662694787
ISBN-10: 3662694786
Sprache: Deutsch
Herstellernummer: 89290076
Einband: Kartoniert / Broschiert
Autor: Knoblauch, Andreas
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 240 x 168 x 25 mm
Von/Mit: Andreas Knoblauch
Erscheinungsdatum: 19.12.2024
Gewicht: 0,759 kg
Artikel-ID: 129096861
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte