139,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matricesencountered in statistics, such as projection matrices and positive definite matrices, and describes special properties of those matrices; and describes various applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. Part III covers numerical linear algebräone of the most important subjects in the field of statistical computing. It begins with a discussion of the basics of numerical computations and goes on to describe accurate and efficient algorithms for factoring matrices, how to solve linear systems of equations, and the extraction of eigenvalues and eigenvectors.
Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R or Matlab.
The first two parts of the text are ideal for a course in matrix algebra for statistics students or as a supplementary text for various courses in linear models or multivariate statistics. The third part is ideal for use as a text for a course in statistical computing or as a supplementary text for various courses that emphasize computations.
New to this edition
¿ 100 pages of additional material¿ 30 more exercises¿186 exercises overall
¿ Added discussion of vectors and matrices with complex elements
¿ Additional material on statistical applications
¿ Extensive and reader-friendly cross references and index
Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matricesencountered in statistics, such as projection matrices and positive definite matrices, and describes special properties of those matrices; and describes various applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. Part III covers numerical linear algebräone of the most important subjects in the field of statistical computing. It begins with a discussion of the basics of numerical computations and goes on to describe accurate and efficient algorithms for factoring matrices, how to solve linear systems of equations, and the extraction of eigenvalues and eigenvectors.
Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R or Matlab.
The first two parts of the text are ideal for a course in matrix algebra for statistics students or as a supplementary text for various courses in linear models or multivariate statistics. The third part is ideal for use as a text for a course in statistical computing or as a supplementary text for various courses that emphasize computations.
New to this edition
¿ 100 pages of additional material¿ 30 more exercises¿186 exercises overall
¿ Added discussion of vectors and matrices with complex elements
¿ Additional material on statistical applications
¿ Extensive and reader-friendly cross references and index
Part I Linear Algebra.- 1 Basic Vector/Matrix Structure and Notation.- 2 Vectors and Vector Spaces.- 3 Basic Properties of Matrices.- 4 Vector/Matrix Derivatives and Integrals.- 5 Matrix Transformations and Factorizations.- 6 Solution of Linear Systems.- 7 Evaluation of Eigenvalues and Eigenvectors.- Part II Applications in Data Analysis.- 8 Special Matrices and Operations Useful in Modeling andData Analysis.- 9 Selected Applications in Statistics.- Part III Numerical Methods and Software.- 10 Numerical Methods.- 11 Numerical Linear Algebra.- 12 Software for Numerical Linear Algebra.- Appendices and Back Matter.- Bibliography.- Index.
Erscheinungsjahr: | 2017 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Springer Texts in Statistics |
Inhalt: | Einband - flex.(Paperback) |
ISBN-13: | 9783319648668 |
ISBN-10: | 3319648667 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-64866-8 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Gentle, James E. |
Auflage: | 2nd ed. 2017 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Texts in Statistics |
Verantwortliche Person für die EU: | preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de |
Maße: | 254 x 178 x 37 mm |
Von/Mit: | James E. Gentle |
Erscheinungsdatum: | 21.10.2017 |
Gewicht: | 1,257 kg |
Part I Linear Algebra.- 1 Basic Vector/Matrix Structure and Notation.- 2 Vectors and Vector Spaces.- 3 Basic Properties of Matrices.- 4 Vector/Matrix Derivatives and Integrals.- 5 Matrix Transformations and Factorizations.- 6 Solution of Linear Systems.- 7 Evaluation of Eigenvalues and Eigenvectors.- Part II Applications in Data Analysis.- 8 Special Matrices and Operations Useful in Modeling andData Analysis.- 9 Selected Applications in Statistics.- Part III Numerical Methods and Software.- 10 Numerical Methods.- 11 Numerical Linear Algebra.- 12 Software for Numerical Linear Algebra.- Appendices and Back Matter.- Bibliography.- Index.
Erscheinungsjahr: | 2017 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Springer Texts in Statistics |
Inhalt: | Einband - flex.(Paperback) |
ISBN-13: | 9783319648668 |
ISBN-10: | 3319648667 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-64866-8 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Gentle, James E. |
Auflage: | 2nd ed. 2017 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Texts in Statistics |
Verantwortliche Person für die EU: | preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de |
Maße: | 254 x 178 x 37 mm |
Von/Mit: | James E. Gentle |
Erscheinungsdatum: | 21.10.2017 |
Gewicht: | 1,257 kg |