Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Matrizentheorie
Taschenbuch von Felix R. Gantmacher
Sprache: Deutsch

59,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
12.1. 1. In diesem Kapitel wird folgende Frage behandelt: Gegeben seien vier Matnzen A, B, A1, B1 gleichen Typs (m, n) mit Elementen aus e~nem Zahlkorper K. Gesucht s~nd die Bedingungen, unter denen zwei regulare quadra­ t~8che Matrizen P und Q der Ordnung m bzw. n existieren derart, dafJ gleichzeitig (1) giU. 1) Fuhrt man die Matrizenbuschel A + J..B und A1 + J..B ein, so k6nnen die beiden 1 Matrizengleichungen (1) durch die einzige Gleichung (2) P(A + J..B) Q = A1 + J..B1 ersetzt werden. Definition 1. Wir nennen zwei Buschel A + J..B und A1 + J..B rechteckiger Ma­ 1 trizen gleichen Typs (m, n) streng aquivalent, wenn fUr sie die Gleichung (2) gilt und dabei P und Q konstante (d. h. von J.. unabhiingige) regulare quadratische Matrizen 2 (m-ter bzw. n-ter Ordnung) sind. ) Nach der allgemeinen Definition, der Aquivalenz von Polynommatrizen (vgl.
12.1. 1. In diesem Kapitel wird folgende Frage behandelt: Gegeben seien vier Matnzen A, B, A1, B1 gleichen Typs (m, n) mit Elementen aus e~nem Zahlkorper K. Gesucht s~nd die Bedingungen, unter denen zwei regulare quadra­ t~8che Matrizen P und Q der Ordnung m bzw. n existieren derart, dafJ gleichzeitig (1) giU. 1) Fuhrt man die Matrizenbuschel A + J..B und A1 + J..B ein, so k6nnen die beiden 1 Matrizengleichungen (1) durch die einzige Gleichung (2) P(A + J..B) Q = A1 + J..B1 ersetzt werden. Definition 1. Wir nennen zwei Buschel A + J..B und A1 + J..B rechteckiger Ma­ 1 trizen gleichen Typs (m, n) streng aquivalent, wenn fUr sie die Gleichung (2) gilt und dabei P und Q konstante (d. h. von J.. unabhiingige) regulare quadratische Matrizen 2 (m-ter bzw. n-ter Ordnung) sind. ) Nach der allgemeinen Definition, der Aquivalenz von Polynommatrizen (vgl.
Inhaltsverzeichnis
Erster Teil: Allgemeine Theorie.- 1. Matrizen und Matrizenoperationen.- 2. Der Gaußsche Algorithmus.- 3. Lineare Operatoren im n-dimensionalen Vektorraum.- 4. Charakteristisches Polynom und Minimalpolynom einer Matrix.- 5. Matrizenfunktionen.- 6. Äquivalente Transformationen von Polynommatrizen. Analytische Elementarteilertheorie.- 7. Die Struktur linearer Operatoren im n-dimensionalen Vektorraum. Geometrische Elementarteilertheorie.- 8. Matrizengleichungen.- 9. Lineare Operatoren im unitären Raum.- 10. Quadratische und hermitesche Formen.- Zweiter Teil: Spezielle Fragen und Anwendungen.- 11. Komplexe symmetrische, schief symmetrische und orthogonale Matrizen.- 12. Singuläre Matrizenbüschel.- 13. Matrizen mit nichtnegativen Elementen.- 14. Verschiedene Regularitätskriterien und die Lokalisierung der charakteristischen Wurzeln.- 15. Anwendungen der Matrizenrechnung zur Untersuchung linearer Differentialgleichungssysteme.- 16. Das Routh-Hurwitzsehe Problem und verwandte Fragen.- Anhang von V. B. Lidskij.- Ungleichungen für charakteristische und singuläre Wurzeln.- 1. Majorantenfolgen.- 2. Die Horn-Neumannschen Ungleichungen.- 3. Die Weylschen Ungleichungen.- 4. Maximal-Minimaleigenschaften von Summen und Produkten der charakteristischen Wurzeln hermitescher Operatoren.- 5. Ungleichungen für charakteristische und singuläre Wurzeln von Operatorsumnien und -produkten.- 6. Eine andere Aufgabenstellung bezüglich des Spektrums von Summen und Produkten hermitescher Operatoren.- Literatur.- Namen- und Sachverzeichnis.
Details
Erscheinungsjahr: 2011
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 654 S.
ISBN-13: 9783642712449
ISBN-10: 3642712444
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Gantmacher, Felix R.
Übersetzung: Stengert, K.
Soyka, D.
Boseck, H.
Auflage: Softcover reprint of the original 1st ed. 1986
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 244 x 170 x 36 mm
Von/Mit: Felix R. Gantmacher
Erscheinungsdatum: 17.11.2011
Gewicht: 1,12 kg
Artikel-ID: 106334768
Inhaltsverzeichnis
Erster Teil: Allgemeine Theorie.- 1. Matrizen und Matrizenoperationen.- 2. Der Gaußsche Algorithmus.- 3. Lineare Operatoren im n-dimensionalen Vektorraum.- 4. Charakteristisches Polynom und Minimalpolynom einer Matrix.- 5. Matrizenfunktionen.- 6. Äquivalente Transformationen von Polynommatrizen. Analytische Elementarteilertheorie.- 7. Die Struktur linearer Operatoren im n-dimensionalen Vektorraum. Geometrische Elementarteilertheorie.- 8. Matrizengleichungen.- 9. Lineare Operatoren im unitären Raum.- 10. Quadratische und hermitesche Formen.- Zweiter Teil: Spezielle Fragen und Anwendungen.- 11. Komplexe symmetrische, schief symmetrische und orthogonale Matrizen.- 12. Singuläre Matrizenbüschel.- 13. Matrizen mit nichtnegativen Elementen.- 14. Verschiedene Regularitätskriterien und die Lokalisierung der charakteristischen Wurzeln.- 15. Anwendungen der Matrizenrechnung zur Untersuchung linearer Differentialgleichungssysteme.- 16. Das Routh-Hurwitzsehe Problem und verwandte Fragen.- Anhang von V. B. Lidskij.- Ungleichungen für charakteristische und singuläre Wurzeln.- 1. Majorantenfolgen.- 2. Die Horn-Neumannschen Ungleichungen.- 3. Die Weylschen Ungleichungen.- 4. Maximal-Minimaleigenschaften von Summen und Produkten der charakteristischen Wurzeln hermitescher Operatoren.- 5. Ungleichungen für charakteristische und singuläre Wurzeln von Operatorsumnien und -produkten.- 6. Eine andere Aufgabenstellung bezüglich des Spektrums von Summen und Produkten hermitescher Operatoren.- Literatur.- Namen- und Sachverzeichnis.
Details
Erscheinungsjahr: 2011
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 654 S.
ISBN-13: 9783642712449
ISBN-10: 3642712444
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Gantmacher, Felix R.
Übersetzung: Stengert, K.
Soyka, D.
Boseck, H.
Auflage: Softcover reprint of the original 1st ed. 1986
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 244 x 170 x 36 mm
Von/Mit: Felix R. Gantmacher
Erscheinungsdatum: 17.11.2011
Gewicht: 1,12 kg
Artikel-ID: 106334768
Sicherheitshinweis