106,99 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Present theoretical and practical developments in mixture-based modeling and their importance in different applications;
Discusses perspectives and challenging future works related tomixture modeling.
Present theoretical and practical developments in mixture-based modeling and their importance in different applications;
Discusses perspectives and challenging future works related tomixture modeling.
Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection
Present theoretical and practical developments in mixture-based modeling and their importance in different applications
Discusses perspectives and challenging future works related to mixture modeling
A Gaussian Mixture Model Approach To Classifying Response Types.- Interactive Generation Of Calligraphic Trajectories From Gaussian Mixtures.- Mixture models for the analysis, edition, and synthesis of continuous time series.- Multivariate Bounded Asymmetric Gaussian Mixture Model.- Online Recognition Via A Finite Mixture Of Multivariate Generalized Gaussian Distributions.- L2 Normalized Data Clustering Through the Dirichlet Process Mixture Model of Von Mises Distributions with Localized Feature Selection.- Deriving Probabilistic SVM Kernels From Exponential Family Approximations to Multivariate Distributions for Count Data.- Toward an Efficient Computation of Log-likelihood Functions in Statistical Inference: Overdispersed Count Data Clustering.- A Frequentist Inference Method Based On Finite Bivariate And Multivariate Beta Mixture Models.- Finite Inverted Beta-Liouville Mixture Models with Variational Component Splitting.- Online Variational Learning for Medical Image Data Clustering.- Color Image Segmentation using Semi-Bounded Finite Mixture Models by Incorporating Mean Templates.- Medical Image Segmentation Based on Spatially Constrained Inverted Beta-Liouville Mixture Models.- Flexible Statistical Learning Model For Unsupervised Image Modeling And Segmentation.
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Unsupervised and Semi-Supervised Learning |
Inhalt: |
xii
355 S. 32 s/w Illustr. 88 farbige Illustr. 355 p. 120 illus. 88 illus. in color. |
ISBN-13: | 9783030238759 |
ISBN-10: | 303023875X |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Bouguila, Nizar
Fan, Wentao |
Redaktion: |
Fan, Wentao
Bouguila, Nizar |
Herausgeber: | Nizar Bouguila/Wentao Fan |
Auflage: | 1st ed. 2020 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Unsupervised and Semi-Supervised Learning |
Maße: | 241 x 160 x 26 mm |
Von/Mit: | Wentao Fan (u. a.) |
Erscheinungsdatum: | 30.08.2019 |
Gewicht: | 0,717 kg |
Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection
Present theoretical and practical developments in mixture-based modeling and their importance in different applications
Discusses perspectives and challenging future works related to mixture modeling
A Gaussian Mixture Model Approach To Classifying Response Types.- Interactive Generation Of Calligraphic Trajectories From Gaussian Mixtures.- Mixture models for the analysis, edition, and synthesis of continuous time series.- Multivariate Bounded Asymmetric Gaussian Mixture Model.- Online Recognition Via A Finite Mixture Of Multivariate Generalized Gaussian Distributions.- L2 Normalized Data Clustering Through the Dirichlet Process Mixture Model of Von Mises Distributions with Localized Feature Selection.- Deriving Probabilistic SVM Kernels From Exponential Family Approximations to Multivariate Distributions for Count Data.- Toward an Efficient Computation of Log-likelihood Functions in Statistical Inference: Overdispersed Count Data Clustering.- A Frequentist Inference Method Based On Finite Bivariate And Multivariate Beta Mixture Models.- Finite Inverted Beta-Liouville Mixture Models with Variational Component Splitting.- Online Variational Learning for Medical Image Data Clustering.- Color Image Segmentation using Semi-Bounded Finite Mixture Models by Incorporating Mean Templates.- Medical Image Segmentation Based on Spatially Constrained Inverted Beta-Liouville Mixture Models.- Flexible Statistical Learning Model For Unsupervised Image Modeling And Segmentation.
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Unsupervised and Semi-Supervised Learning |
Inhalt: |
xii
355 S. 32 s/w Illustr. 88 farbige Illustr. 355 p. 120 illus. 88 illus. in color. |
ISBN-13: | 9783030238759 |
ISBN-10: | 303023875X |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Bouguila, Nizar
Fan, Wentao |
Redaktion: |
Fan, Wentao
Bouguila, Nizar |
Herausgeber: | Nizar Bouguila/Wentao Fan |
Auflage: | 1st ed. 2020 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Unsupervised and Semi-Supervised Learning |
Maße: | 241 x 160 x 26 mm |
Von/Mit: | Wentao Fan (u. a.) |
Erscheinungsdatum: | 30.08.2019 |
Gewicht: | 0,717 kg |