Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
MLOps - Kernkonzepte im Überblick
Machine-Learning-Prozesse im Unternehmen nachhaltig automatisieren und skalieren
Taschenbuch von Mark Treveil
Sprache: Deutsch
Originalsprache: Englisch

34,90 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
Erfolgreiche ML-Pipelines entwickeln und mit MLOps organisatorische Herausforderungen meistern

  • Stellt DevOps-Konzepte vor, die die speziellen Anforderungen von ML-Anwendungen berücksichtigen
  • Umfasst die Verwaltung, Bereitstellung, Skalierung und Überwachung von Machine-Learning-Modellen im Unternehmensumfeld
  • Für Data Scientists und Data Engineers, die nach besseren Strategien für den produktiven Einsatz ihrer ML-Modelle suchen

Machine-Learning-Modelle zu entwickeln ist das eine, sie im Produktivbetrieb effizient einzusetzen, eine ebenfalls nicht zu unterschätzende Herausforderung - so die Erfahrung vieler Unternehmen. Dieses Buch zeigt Ihnen, wie Sie mithilfe durchdachter MLOps-Strategien eine stabile DevOps-Umgebung für Ihre ML-Anwendungen aufbauen, Ihre Modelle kontinuierlich verbessern und langfristig warten.

Das Buch erläutert MLOps-Schlüsselkonzepte, mit denen Data Scientists und Data Engineers ML-Pipelines und -Workflows optimieren können. Anhand von Fallbeispielen aus der ganzen Welt geben neun ML-Experten praxiserprobte Hilfestellungen zu den fünf Schritten des Modelllebenszyklus - Entwicklung, Preproduction, Deployment, Monitoring und Governance. Sie erfahren auf diese Weise, wie robuste MLOps-Prozesse umfassend in den ML-Produktworkflow integriert werden können.

  • Erschließen Sie den Wert Ihrer Data-Science-Anwendungen für Ihr Unternehmen vollständig, indem Sie Störfaktoren in ML-Pipelines und -Workflows ausräumen
  • Verfeinern Sie Ihre ML-Modelle durch Retraining, regelmäßiges Tuning und grundlegende Überarbeitung, um eine dauerhaft hohe Qualität zu gewährleisten
  • Organisieren Sie den MLOps-Lebenszyklus so, dass Risiken, die in den Modellen stecken könnten, minimiert werden, damit die Ergebnisse unverzerrt, ausgewogen und nachvollziehbar sind
  • Optimieren Sie ML-Modelle nicht nur für die eigene Deployment-Pipeline, sondern auch für externe Partner, deren Systeme komplexer und weniger standardisiert sind

»Wenn Sie auf der Suche nach Strategien sind, um die konkreten Prozesse der ML-Entwicklung zwischen den Teams zu verbessern, ist dieses Buch genau das Richtige für Sie.«

- Adi Polak, Senior Software Engineer, Microsoft

Erfolgreiche ML-Pipelines entwickeln und mit MLOps organisatorische Herausforderungen meistern

  • Stellt DevOps-Konzepte vor, die die speziellen Anforderungen von ML-Anwendungen berücksichtigen
  • Umfasst die Verwaltung, Bereitstellung, Skalierung und Überwachung von Machine-Learning-Modellen im Unternehmensumfeld
  • Für Data Scientists und Data Engineers, die nach besseren Strategien für den produktiven Einsatz ihrer ML-Modelle suchen

Machine-Learning-Modelle zu entwickeln ist das eine, sie im Produktivbetrieb effizient einzusetzen, eine ebenfalls nicht zu unterschätzende Herausforderung - so die Erfahrung vieler Unternehmen. Dieses Buch zeigt Ihnen, wie Sie mithilfe durchdachter MLOps-Strategien eine stabile DevOps-Umgebung für Ihre ML-Anwendungen aufbauen, Ihre Modelle kontinuierlich verbessern und langfristig warten.

Das Buch erläutert MLOps-Schlüsselkonzepte, mit denen Data Scientists und Data Engineers ML-Pipelines und -Workflows optimieren können. Anhand von Fallbeispielen aus der ganzen Welt geben neun ML-Experten praxiserprobte Hilfestellungen zu den fünf Schritten des Modelllebenszyklus - Entwicklung, Preproduction, Deployment, Monitoring und Governance. Sie erfahren auf diese Weise, wie robuste MLOps-Prozesse umfassend in den ML-Produktworkflow integriert werden können.

  • Erschließen Sie den Wert Ihrer Data-Science-Anwendungen für Ihr Unternehmen vollständig, indem Sie Störfaktoren in ML-Pipelines und -Workflows ausräumen
  • Verfeinern Sie Ihre ML-Modelle durch Retraining, regelmäßiges Tuning und grundlegende Überarbeitung, um eine dauerhaft hohe Qualität zu gewährleisten
  • Organisieren Sie den MLOps-Lebenszyklus so, dass Risiken, die in den Modellen stecken könnten, minimiert werden, damit die Ergebnisse unverzerrt, ausgewogen und nachvollziehbar sind
  • Optimieren Sie ML-Modelle nicht nur für die eigene Deployment-Pipeline, sondern auch für externe Partner, deren Systeme komplexer und weniger standardisiert sind

»Wenn Sie auf der Suche nach Strategien sind, um die konkreten Prozesse der ML-Entwicklung zwischen den Teams zu verbessern, ist dieses Buch genau das Richtige für Sie.«

- Adi Polak, Senior Software Engineer, Microsoft

Über den Autor
Mark Treveil hat bereits zahlreiche Produkte in verschiedenen Bereichen wie etwa Telekommunikation, Bankwesen und dem Online-Börsengeschäft konzipiert. Sein eigenes Startup hat eine regelrechte Wende in der britischen Kommunalverwaltung initiiert, wo seine Digitalisierungslösung noch immer vorherrscht. Derzeit ist er im Pariser Produktteam von Dataiku beschäftigt.
Details
Erscheinungsjahr: 2021
Fachbereich: Programmiersprachen
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Animals
Inhalt: 204 S.
ISBN-13: 9783960091721
ISBN-10: 3960091729
Sprache: Deutsch
Originalsprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Treveil, Mark
Übersetzung: Fraaß, Marcus
Hersteller: O'Reilly
Dpunkt.Verlag GmbH
Verantwortliche Person für die EU: dpunkt.verlag GmbH, Vanessa Niethammer, Wieblinger Weg 17, D-69123 Heidelberg, hallo@dpunkt.de
Maße: 237 x 162 x 14 mm
Von/Mit: Mark Treveil
Erscheinungsdatum: 25.08.2021
Gewicht: 0,394 kg
Artikel-ID: 119945466
Über den Autor
Mark Treveil hat bereits zahlreiche Produkte in verschiedenen Bereichen wie etwa Telekommunikation, Bankwesen und dem Online-Börsengeschäft konzipiert. Sein eigenes Startup hat eine regelrechte Wende in der britischen Kommunalverwaltung initiiert, wo seine Digitalisierungslösung noch immer vorherrscht. Derzeit ist er im Pariser Produktteam von Dataiku beschäftigt.
Details
Erscheinungsjahr: 2021
Fachbereich: Programmiersprachen
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Animals
Inhalt: 204 S.
ISBN-13: 9783960091721
ISBN-10: 3960091729
Sprache: Deutsch
Originalsprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Treveil, Mark
Übersetzung: Fraaß, Marcus
Hersteller: O'Reilly
Dpunkt.Verlag GmbH
Verantwortliche Person für die EU: dpunkt.verlag GmbH, Vanessa Niethammer, Wieblinger Weg 17, D-69123 Heidelberg, hallo@dpunkt.de
Maße: 237 x 162 x 14 mm
Von/Mit: Mark Treveil
Erscheinungsdatum: 25.08.2021
Gewicht: 0,394 kg
Artikel-ID: 119945466
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte