Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
48,25 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Data miner's survival kit for explainable, effective, and efficient algorithms enabling responsible decision-making
¿DESCRIPTION
"Modern Data Mining with Python" is a guidebook for responsibly implementing data mining techniques that involve collecting, storing, and analyzing large amounts of structured and unstructured data to extract useful insights and patterns.
Enter into the world of data mining and machine learning. Use insights from various data sources, from social media to credit card transactions. Master statistical tools, explore data trends, and patterns. Understand decision trees and artificial neural networks (ANNs). Manage high-dimensional data with dimensionality reduction. Explore binary classification with logistic regression. Spot concealed patterns with unsupervised learning. Analyze text with recurrent neural networks (RNNs) and visuals with convolutional neural networks (CNNs). Ensure model compliance with regulatory standards.
After reading this book, readers will be equipped with the skills and knowledge necessary to use Python for data mining and analysis in an industry set-up. They will be able to analyze and implement algorithms on large structured and unstructured datasets.
WHAT YOU WILL LEARN
¿ Explore the data mining spectrum ranging from data exploration and statistics.
¿ Gain hands-on experience applying modern algorithms to real-world problems in the financial industry.
¿ Develop an understanding of various risks associated with model usage in regulated industries.
¿ Gain knowledge about best practices and regulatory guidelines to mitigate model usage-related risk in key banking areas.
¿ Develop and deploy risk-mitigated algorithms on self-serve ModelOps platforms.
WHO THIS BOOK IS FOR
This book is for a wide range of early career professionals and students interested in data mining or data science with a financial services industry focus. Senior industry professionals, and educators, trying to implement data mining algorithms can benefit as well.
¿DESCRIPTION
"Modern Data Mining with Python" is a guidebook for responsibly implementing data mining techniques that involve collecting, storing, and analyzing large amounts of structured and unstructured data to extract useful insights and patterns.
Enter into the world of data mining and machine learning. Use insights from various data sources, from social media to credit card transactions. Master statistical tools, explore data trends, and patterns. Understand decision trees and artificial neural networks (ANNs). Manage high-dimensional data with dimensionality reduction. Explore binary classification with logistic regression. Spot concealed patterns with unsupervised learning. Analyze text with recurrent neural networks (RNNs) and visuals with convolutional neural networks (CNNs). Ensure model compliance with regulatory standards.
After reading this book, readers will be equipped with the skills and knowledge necessary to use Python for data mining and analysis in an industry set-up. They will be able to analyze and implement algorithms on large structured and unstructured datasets.
WHAT YOU WILL LEARN
¿ Explore the data mining spectrum ranging from data exploration and statistics.
¿ Gain hands-on experience applying modern algorithms to real-world problems in the financial industry.
¿ Develop an understanding of various risks associated with model usage in regulated industries.
¿ Gain knowledge about best practices and regulatory guidelines to mitigate model usage-related risk in key banking areas.
¿ Develop and deploy risk-mitigated algorithms on self-serve ModelOps platforms.
WHO THIS BOOK IS FOR
This book is for a wide range of early career professionals and students interested in data mining or data science with a financial services industry focus. Senior industry professionals, and educators, trying to implement data mining algorithms can benefit as well.
Data miner's survival kit for explainable, effective, and efficient algorithms enabling responsible decision-making
¿DESCRIPTION
"Modern Data Mining with Python" is a guidebook for responsibly implementing data mining techniques that involve collecting, storing, and analyzing large amounts of structured and unstructured data to extract useful insights and patterns.
Enter into the world of data mining and machine learning. Use insights from various data sources, from social media to credit card transactions. Master statistical tools, explore data trends, and patterns. Understand decision trees and artificial neural networks (ANNs). Manage high-dimensional data with dimensionality reduction. Explore binary classification with logistic regression. Spot concealed patterns with unsupervised learning. Analyze text with recurrent neural networks (RNNs) and visuals with convolutional neural networks (CNNs). Ensure model compliance with regulatory standards.
After reading this book, readers will be equipped with the skills and knowledge necessary to use Python for data mining and analysis in an industry set-up. They will be able to analyze and implement algorithms on large structured and unstructured datasets.
WHAT YOU WILL LEARN
¿ Explore the data mining spectrum ranging from data exploration and statistics.
¿ Gain hands-on experience applying modern algorithms to real-world problems in the financial industry.
¿ Develop an understanding of various risks associated with model usage in regulated industries.
¿ Gain knowledge about best practices and regulatory guidelines to mitigate model usage-related risk in key banking areas.
¿ Develop and deploy risk-mitigated algorithms on self-serve ModelOps platforms.
WHO THIS BOOK IS FOR
This book is for a wide range of early career professionals and students interested in data mining or data science with a financial services industry focus. Senior industry professionals, and educators, trying to implement data mining algorithms can benefit as well.
¿DESCRIPTION
"Modern Data Mining with Python" is a guidebook for responsibly implementing data mining techniques that involve collecting, storing, and analyzing large amounts of structured and unstructured data to extract useful insights and patterns.
Enter into the world of data mining and machine learning. Use insights from various data sources, from social media to credit card transactions. Master statistical tools, explore data trends, and patterns. Understand decision trees and artificial neural networks (ANNs). Manage high-dimensional data with dimensionality reduction. Explore binary classification with logistic regression. Spot concealed patterns with unsupervised learning. Analyze text with recurrent neural networks (RNNs) and visuals with convolutional neural networks (CNNs). Ensure model compliance with regulatory standards.
After reading this book, readers will be equipped with the skills and knowledge necessary to use Python for data mining and analysis in an industry set-up. They will be able to analyze and implement algorithms on large structured and unstructured datasets.
WHAT YOU WILL LEARN
¿ Explore the data mining spectrum ranging from data exploration and statistics.
¿ Gain hands-on experience applying modern algorithms to real-world problems in the financial industry.
¿ Develop an understanding of various risks associated with model usage in regulated industries.
¿ Gain knowledge about best practices and regulatory guidelines to mitigate model usage-related risk in key banking areas.
¿ Develop and deploy risk-mitigated algorithms on self-serve ModelOps platforms.
WHO THIS BOOK IS FOR
This book is for a wide range of early career professionals and students interested in data mining or data science with a financial services industry focus. Senior industry professionals, and educators, trying to implement data mining algorithms can benefit as well.
Über den Autor
Dushyant Singh Sengar is a passionate leader in AI and Risk management with experience building high-performing teams and leading organizations to become data-driven. His extensive 18 years of experience on both sides of the Atlantic spans various roles, including model development, risk assessment, and driving AI product development initiatives.
Details
Erscheinungsjahr: | 2024 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Titelzusatz: | A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps (English Edition) |
ISBN-13: | 9789355519146 |
ISBN-10: | 9355519141 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Singh Sengar, Dushyant
Chandra, Vikash |
Hersteller: | BPB Publications |
Maße: | 235 x 191 x 24 mm |
Von/Mit: | Dushyant Singh Sengar (u. a.) |
Erscheinungsdatum: | 26.02.2024 |
Gewicht: | 0,816 kg |
Über den Autor
Dushyant Singh Sengar is a passionate leader in AI and Risk management with experience building high-performing teams and leading organizations to become data-driven. His extensive 18 years of experience on both sides of the Atlantic spans various roles, including model development, risk assessment, and driving AI product development initiatives.
Details
Erscheinungsjahr: | 2024 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Titelzusatz: | A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps (English Edition) |
ISBN-13: | 9789355519146 |
ISBN-10: | 9355519141 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Singh Sengar, Dushyant
Chandra, Vikash |
Hersteller: | BPB Publications |
Maße: | 235 x 191 x 24 mm |
Von/Mit: | Dushyant Singh Sengar (u. a.) |
Erscheinungsdatum: | 26.02.2024 |
Gewicht: | 0,816 kg |
Warnhinweis