Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Morse Theory and Floer Homology
Taschenbuch von Michèle Audin (u. a.)
Sprache: Englisch

80,70 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold.
The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications.
Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part.
The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis.
The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students.
This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold.
The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications.
Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part.
The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis.
The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students.
Zusammenfassung

Translation of the popular French textbook

Provides a unified presentation of Morse theory and Floer homology that is unique in the English language

Explains all the required background on symplectic geometry, differential geometry, algebraic topology and analysis

Includes supplementary material: [...]

Inhaltsverzeichnis

Introduction to Part I.- Morse Functions.- Pseudo-Gradients.- The Morse Complex.- Morse Homology, Applications.- Introduction to Part II.- What You Need To Know About Symplectic Geometry.- The Arnold Conjecture and the Floer Equation.- The Maslov Index.- Linearization and Transversality.- Spaces of Trajectories.- From Floer To Morse.- Floer Homology: Invariance.- Elliptic Regularity.- Technical Lemmas.- Exercises for the Second Part.- Appendices: What You Need to Know to Read This Book.

Details
Erscheinungsjahr: 2013
Fachbereich: Geometrie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiv
596 S.
114 s/w Illustr.
596 p. 114 illus.
ISBN-13: 9781447154952
ISBN-10: 1447154959
Sprache: Englisch
Herstellernummer: 86299505
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Audin, Michèle
Damian, Mihai
Übersetzung: Erné, Reinie
Hersteller: Springer London
Universitext
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 33 mm
Von/Mit: Michèle Audin (u. a.)
Erscheinungsdatum: 17.12.2013
Gewicht: 0,914 kg
Artikel-ID: 105688523
Zusammenfassung

Translation of the popular French textbook

Provides a unified presentation of Morse theory and Floer homology that is unique in the English language

Explains all the required background on symplectic geometry, differential geometry, algebraic topology and analysis

Includes supplementary material: [...]

Inhaltsverzeichnis

Introduction to Part I.- Morse Functions.- Pseudo-Gradients.- The Morse Complex.- Morse Homology, Applications.- Introduction to Part II.- What You Need To Know About Symplectic Geometry.- The Arnold Conjecture and the Floer Equation.- The Maslov Index.- Linearization and Transversality.- Spaces of Trajectories.- From Floer To Morse.- Floer Homology: Invariance.- Elliptic Regularity.- Technical Lemmas.- Exercises for the Second Part.- Appendices: What You Need to Know to Read This Book.

Details
Erscheinungsjahr: 2013
Fachbereich: Geometrie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiv
596 S.
114 s/w Illustr.
596 p. 114 illus.
ISBN-13: 9781447154952
ISBN-10: 1447154959
Sprache: Englisch
Herstellernummer: 86299505
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Audin, Michèle
Damian, Mihai
Übersetzung: Erné, Reinie
Hersteller: Springer London
Universitext
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 33 mm
Von/Mit: Michèle Audin (u. a.)
Erscheinungsdatum: 17.12.2013
Gewicht: 0,914 kg
Artikel-ID: 105688523
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte