Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
64,15 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
This book thoroughly examines the distribution of prime numbers in arithmetic progressions. It covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions, the theorem of Siegel, and functional equations of the L-functions and their consequences for the distribution of prime numbers. In addition, a simplified, improved version of the large sieve method is presented. The 3rd edition includes a large number of revisions and corrections as well as a new section with references to more recent work in the field.
This book thoroughly examines the distribution of prime numbers in arithmetic progressions. It covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions, the theorem of Siegel, and functional equations of the L-functions and their consequences for the distribution of prime numbers. In addition, a simplified, improved version of the large sieve method is presented. The 3rd edition includes a large number of revisions and corrections as well as a new section with references to more recent work in the field.
Zusammenfassung
This book thoroughly examines the distribution of prime numbers in arithmetic progressions. It covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions, the theorem of Siegel, and functional equations of the L-functions and their consequences for the distribution of prime numbers. In addition, a simplified, improved version of the large sieve method is presented. The 3rd edition includes a large number of revisions and corrections as well as a new section with references to more recent work in the field.
Inhaltsverzeichnis
From the contents: Primes in Arithmetic Progression.- Gauss' Sum.- Cyclotomy.- Primes in Arithmetic Progression: The General Modulus.- Primitive Characters.- Dirichlet's Class Number Formula.- The Distribution of the Primes.- Riemann's Memoir.- The Functional Equation of the L Function.- Properties of the Gamma Function.- Integral Functions of Order 1.- The Infinite Products for xi(s) and xi(s,Zero-Free Region for zeta(s).- Zero-Free Regions for L(s, chi).- The Number N(T).- The Number N(T, chi).- The explicit Formula for psi(x).- The Prime Number Theorem.- The Explicit Formula for psi(x,chi).- The Prime Number Theorem for Arithmetic Progressions (I).- Siegel's Theorem.- The Prime Number Theorem for Arithmetic Progressions (II).- The Pólya-Vinogradov Inequality.- Further Prime Number Sums.
Details
Erscheinungsjahr: | 2000 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Graduate Texts in Mathematics |
Inhalt: |
xiv
182 S. |
ISBN-13: | 9780387950976 |
ISBN-10: | 0387950974 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: | Davenport, Harold |
Bearbeitung: | Montgomery, H. L. |
Auflage: | 3rd ed. 2000 |
Hersteller: |
Springer New York
Springer US, New York, N.Y. Graduate Texts in Mathematics |
Maße: | 241 x 160 x 17 mm |
Von/Mit: | Harold Davenport |
Erscheinungsdatum: | 31.10.2000 |
Gewicht: | 0,471 kg |
Zusammenfassung
This book thoroughly examines the distribution of prime numbers in arithmetic progressions. It covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions, the theorem of Siegel, and functional equations of the L-functions and their consequences for the distribution of prime numbers. In addition, a simplified, improved version of the large sieve method is presented. The 3rd edition includes a large number of revisions and corrections as well as a new section with references to more recent work in the field.
Inhaltsverzeichnis
From the contents: Primes in Arithmetic Progression.- Gauss' Sum.- Cyclotomy.- Primes in Arithmetic Progression: The General Modulus.- Primitive Characters.- Dirichlet's Class Number Formula.- The Distribution of the Primes.- Riemann's Memoir.- The Functional Equation of the L Function.- Properties of the Gamma Function.- Integral Functions of Order 1.- The Infinite Products for xi(s) and xi(s,Zero-Free Region for zeta(s).- Zero-Free Regions for L(s, chi).- The Number N(T).- The Number N(T, chi).- The explicit Formula for psi(x).- The Prime Number Theorem.- The Explicit Formula for psi(x,chi).- The Prime Number Theorem for Arithmetic Progressions (I).- Siegel's Theorem.- The Prime Number Theorem for Arithmetic Progressions (II).- The Pólya-Vinogradov Inequality.- Further Prime Number Sums.
Details
Erscheinungsjahr: | 2000 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Graduate Texts in Mathematics |
Inhalt: |
xiv
182 S. |
ISBN-13: | 9780387950976 |
ISBN-10: | 0387950974 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: | Davenport, Harold |
Bearbeitung: | Montgomery, H. L. |
Auflage: | 3rd ed. 2000 |
Hersteller: |
Springer New York
Springer US, New York, N.Y. Graduate Texts in Mathematics |
Maße: | 241 x 160 x 17 mm |
Von/Mit: | Harold Davenport |
Erscheinungsdatum: | 31.10.2000 |
Gewicht: | 0,471 kg |
Warnhinweis