Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Multiplicative Number Theory
Buch von Harold Davenport
Sprache: Englisch

64,15 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This book thoroughly examines the distribution of prime numbers in arithmetic progressions. It covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions, the theorem of Siegel, and functional equations of the L-functions and their consequences for the distribution of prime numbers. In addition, a simplified, improved version of the large sieve method is presented. The 3rd edition includes a large number of revisions and corrections as well as a new section with references to more recent work in the field.
This book thoroughly examines the distribution of prime numbers in arithmetic progressions. It covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions, the theorem of Siegel, and functional equations of the L-functions and their consequences for the distribution of prime numbers. In addition, a simplified, improved version of the large sieve method is presented. The 3rd edition includes a large number of revisions and corrections as well as a new section with references to more recent work in the field.
Zusammenfassung
This book thoroughly examines the distribution of prime numbers in arithmetic progressions. It covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions, the theorem of Siegel, and functional equations of the L-functions and their consequences for the distribution of prime numbers. In addition, a simplified, improved version of the large sieve method is presented. The 3rd edition includes a large number of revisions and corrections as well as a new section with references to more recent work in the field.
Inhaltsverzeichnis
From the contents: Primes in Arithmetic Progression.- Gauss' Sum.- Cyclotomy.- Primes in Arithmetic Progression: The General Modulus.- Primitive Characters.- Dirichlet's Class Number Formula.- The Distribution of the Primes.- Riemann's Memoir.- The Functional Equation of the L Function.- Properties of the Gamma Function.- Integral Functions of Order 1.- The Infinite Products for xi(s) and xi(s,Zero-Free Region for zeta(s).- Zero-Free Regions for L(s, chi).- The Number N(T).- The Number N(T, chi).- The explicit Formula for psi(x).- The Prime Number Theorem.- The Explicit Formula for psi(x,chi).- The Prime Number Theorem for Arithmetic Progressions (I).- Siegel's Theorem.- The Prime Number Theorem for Arithmetic Progressions (II).- The Pólya-Vinogradov Inequality.- Further Prime Number Sums.
Details
Erscheinungsjahr: 2000
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Graduate Texts in Mathematics
Inhalt: xiv
182 S.
ISBN-13: 9780387950976
ISBN-10: 0387950974
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Davenport, Harold
Bearbeitung: Montgomery, H. L.
Auflage: 3rd ed. 2000
Hersteller: Springer New York
Springer US, New York, N.Y.
Graduate Texts in Mathematics
Maße: 241 x 160 x 17 mm
Von/Mit: Harold Davenport
Erscheinungsdatum: 31.10.2000
Gewicht: 0,471 kg
Artikel-ID: 105791809
Zusammenfassung
This book thoroughly examines the distribution of prime numbers in arithmetic progressions. It covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions, the theorem of Siegel, and functional equations of the L-functions and their consequences for the distribution of prime numbers. In addition, a simplified, improved version of the large sieve method is presented. The 3rd edition includes a large number of revisions and corrections as well as a new section with references to more recent work in the field.
Inhaltsverzeichnis
From the contents: Primes in Arithmetic Progression.- Gauss' Sum.- Cyclotomy.- Primes in Arithmetic Progression: The General Modulus.- Primitive Characters.- Dirichlet's Class Number Formula.- The Distribution of the Primes.- Riemann's Memoir.- The Functional Equation of the L Function.- Properties of the Gamma Function.- Integral Functions of Order 1.- The Infinite Products for xi(s) and xi(s,Zero-Free Region for zeta(s).- Zero-Free Regions for L(s, chi).- The Number N(T).- The Number N(T, chi).- The explicit Formula for psi(x).- The Prime Number Theorem.- The Explicit Formula for psi(x,chi).- The Prime Number Theorem for Arithmetic Progressions (I).- Siegel's Theorem.- The Prime Number Theorem for Arithmetic Progressions (II).- The Pólya-Vinogradov Inequality.- Further Prime Number Sums.
Details
Erscheinungsjahr: 2000
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Graduate Texts in Mathematics
Inhalt: xiv
182 S.
ISBN-13: 9780387950976
ISBN-10: 0387950974
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Davenport, Harold
Bearbeitung: Montgomery, H. L.
Auflage: 3rd ed. 2000
Hersteller: Springer New York
Springer US, New York, N.Y.
Graduate Texts in Mathematics
Maße: 241 x 160 x 17 mm
Von/Mit: Harold Davenport
Erscheinungsdatum: 31.10.2000
Gewicht: 0,471 kg
Artikel-ID: 105791809
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte