Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Navier-Stokes Equations on R3 × [0, T]
Taschenbuch von Frank Stenger (u. a.)
Sprache: Englisch

91,40 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
In this monograph, leading researchers in the world of
numerical analysis, partial differential equations, and hard computational
problems study the properties of solutions of the Navier¿Stokes partial differential equations on (x, y, z,
t) ¿ ¿3 × [0, T]. Initially converting the PDE to a
system of integral equations, the authors then describe spaces A of analytic functions that house
solutions of this equation, and show that these spaces of analytic functions
are dense in the spaces S of rapidly
decreasing and infinitely differentiable functions. This method benefits from
the following advantages:
The functions of S are
nearly always conceptual rather than explicit

Initial and boundary
conditions of solutions of PDE are usually drawn from the applied sciences,
and as such, they are nearly always piece-wise analytic, and in this case,
the solutions have the same properties

When methods of
approximation are applied to functions of A they converge at an exponential rate, whereas methods of
approximation applied to the functions of S converge only at a polynomial rate

Enables sharper bounds on
the solution enabling easier existence proofs, and a more accurate and
more efficient method of solution, including accurate error bounds

Following the proofs of denseness, the authors prove the
existence of a solution of the integral equations in the space of functions A ¿ ¿3 × [0, T], and provide an explicit novel
algorithm based on Sinc approximation and Picard¿like iteration for computing
the solution. Additionally, the authors include appendices that provide a
custom Mathematica program for computing solutions based on the explicit
algorithmic approximation procedure, and which supply explicit illustrations of
these computed solutions.
In this monograph, leading researchers in the world of
numerical analysis, partial differential equations, and hard computational
problems study the properties of solutions of the Navier¿Stokes partial differential equations on (x, y, z,
t) ¿ ¿3 × [0, T]. Initially converting the PDE to a
system of integral equations, the authors then describe spaces A of analytic functions that house
solutions of this equation, and show that these spaces of analytic functions
are dense in the spaces S of rapidly
decreasing and infinitely differentiable functions. This method benefits from
the following advantages:
The functions of S are
nearly always conceptual rather than explicit

Initial and boundary
conditions of solutions of PDE are usually drawn from the applied sciences,
and as such, they are nearly always piece-wise analytic, and in this case,
the solutions have the same properties

When methods of
approximation are applied to functions of A they converge at an exponential rate, whereas methods of
approximation applied to the functions of S converge only at a polynomial rate

Enables sharper bounds on
the solution enabling easier existence proofs, and a more accurate and
more efficient method of solution, including accurate error bounds

Following the proofs of denseness, the authors prove the
existence of a solution of the integral equations in the space of functions A ¿ ¿3 × [0, T], and provide an explicit novel
algorithm based on Sinc approximation and Picard¿like iteration for computing
the solution. Additionally, the authors include appendices that provide a
custom Mathematica program for computing solutions based on the explicit
algorithmic approximation procedure, and which supply explicit illustrations of
these computed solutions.
Zusammenfassung

Studies the properties of solutions

of the Navier-Stokes partial differential equations on (x , y, z , t) ? R3 × [0, T]

Demonstrates a new method for

determining solutions of the Navier-Stokes equations by converting partial

differential equations to a system of integral equations describing spaces of

analytic functions containing solutions

Enables sharper bounds on solutions
to Navier-Stokes equations, easier existence proofs, and a more accurate,
efficient method of determining a solution with accurate error bounds

Includes an custom-written
Mathematica package for computing solutions to the Navier-Stokes equations
based on the author's approximation method

Includes supplementary material: [...]

Inhaltsverzeichnis
Preface.- Introduction, PDE, and IE Formulations.- Spaces of Analytic Functions.- Spaces of Solution of the N¿S Equations.- Proof of Convergence of Iteration 1.6.3.- Numerical Methods for Solving N¿S Equations.- Sinc Convolution Examples.- Implementation Notes.- Result Notes.
Details
Erscheinungsjahr: 2018
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: x
226 S.
25 farbige Illustr.
226 p. 25 illus. in color.
ISBN-13: 9783319801629
ISBN-10: 3319801627
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Stenger, Frank
Baumann, Gerd
Tucker, Don
Auflage: Softcover reprint of the original 1st edition 2016
Hersteller: Springer Nature Switzerland
Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 13 mm
Von/Mit: Frank Stenger (u. a.)
Erscheinungsdatum: 14.06.2018
Gewicht: 0,365 kg
Artikel-ID: 114225962
Zusammenfassung

Studies the properties of solutions

of the Navier-Stokes partial differential equations on (x , y, z , t) ? R3 × [0, T]

Demonstrates a new method for

determining solutions of the Navier-Stokes equations by converting partial

differential equations to a system of integral equations describing spaces of

analytic functions containing solutions

Enables sharper bounds on solutions
to Navier-Stokes equations, easier existence proofs, and a more accurate,
efficient method of determining a solution with accurate error bounds

Includes an custom-written
Mathematica package for computing solutions to the Navier-Stokes equations
based on the author's approximation method

Includes supplementary material: [...]

Inhaltsverzeichnis
Preface.- Introduction, PDE, and IE Formulations.- Spaces of Analytic Functions.- Spaces of Solution of the N¿S Equations.- Proof of Convergence of Iteration 1.6.3.- Numerical Methods for Solving N¿S Equations.- Sinc Convolution Examples.- Implementation Notes.- Result Notes.
Details
Erscheinungsjahr: 2018
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: x
226 S.
25 farbige Illustr.
226 p. 25 illus. in color.
ISBN-13: 9783319801629
ISBN-10: 3319801627
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Stenger, Frank
Baumann, Gerd
Tucker, Don
Auflage: Softcover reprint of the original 1st edition 2016
Hersteller: Springer Nature Switzerland
Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 13 mm
Von/Mit: Frank Stenger (u. a.)
Erscheinungsdatum: 14.06.2018
Gewicht: 0,365 kg
Artikel-ID: 114225962
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte