Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
56,20 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide
Key Features
Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide.
Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation.
Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide.
Book Description
As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.
In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously.
On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.
What You Will Learn
Acquaint yourself with important elements of Machine Learning
Understand the feature selection and feature engineering process
Assess performance and error trade-offs for Linear Regression
Build a data model and understand how it works by using different types of algorithm
Learn to tune the parameters of Support Vector machines
Implement clusters to a dataset
Explore the concept of Natural Processing Language and Recommendation Systems
Create a ML architecture from scratch.
Who This Book Is For
This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here.
Key Features
Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide.
Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation.
Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide.
Book Description
As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.
In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously.
On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.
What You Will Learn
Acquaint yourself with important elements of Machine Learning
Understand the feature selection and feature engineering process
Assess performance and error trade-offs for Linear Regression
Build a data model and understand how it works by using different types of algorithm
Learn to tune the parameters of Support Vector machines
Implement clusters to a dataset
Explore the concept of Natural Processing Language and Recommendation Systems
Create a ML architecture from scratch.
Who This Book Is For
This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here.
Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide
Key Features
Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide.
Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation.
Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide.
Book Description
As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.
In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously.
On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.
What You Will Learn
Acquaint yourself with important elements of Machine Learning
Understand the feature selection and feature engineering process
Assess performance and error trade-offs for Linear Regression
Build a data model and understand how it works by using different types of algorithm
Learn to tune the parameters of Support Vector machines
Implement clusters to a dataset
Explore the concept of Natural Processing Language and Recommendation Systems
Create a ML architecture from scratch.
Who This Book Is For
This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here.
Key Features
Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide.
Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation.
Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide.
Book Description
As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.
In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously.
On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.
What You Will Learn
Acquaint yourself with important elements of Machine Learning
Understand the feature selection and feature engineering process
Assess performance and error trade-offs for Linear Regression
Build a data model and understand how it works by using different types of algorithm
Learn to tune the parameters of Support Vector machines
Implement clusters to a dataset
Explore the concept of Natural Processing Language and Recommendation Systems
Create a ML architecture from scratch.
Who This Book Is For
This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here.
Über den Autor
Balaji Venkateswaran is an AI expert, data scientist, machine learning practitioner, and database architect. He has 17+ years of experience in investment banking payment processing, telecom billing, and project management. He has worked for major companies such as ADP, Goldman Sachs, MasterCard, and Wipro. Balaji is a trainer in data science, Hadoop, and Tableau. He holds a postgraduate degree PG in business analytics from Great Lakes Institute of Management, Chennai. Balaji has expertise relating to statistics, classification, regression, pattern recognition, time series forecasting, and unstructured data analysis using text mining procedures. His main interests are neural networks and deep learning. Balaji holds various certifications in IBM SPSS, IBM Watson, IBM big data architect, cloud architect, CEH, Splunk, Salesforce, Agile CSM, and AWS. If you have any questions, don't hesitate to message him on LinkedIn (balvenkateswaran); he will be more than glad to help fellow data scientists.
Details
Erscheinungsjahr: | 2017 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781788397872 |
ISBN-10: | 1788397878 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Venkateswaran, Balaji
Ciaburro, Giuseppe |
Hersteller: | Packt Publishing |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 235 x 191 x 15 mm |
Von/Mit: | Balaji Venkateswaran (u. a.) |
Erscheinungsdatum: | 27.09.2017 |
Gewicht: | 0,51 kg |
Über den Autor
Balaji Venkateswaran is an AI expert, data scientist, machine learning practitioner, and database architect. He has 17+ years of experience in investment banking payment processing, telecom billing, and project management. He has worked for major companies such as ADP, Goldman Sachs, MasterCard, and Wipro. Balaji is a trainer in data science, Hadoop, and Tableau. He holds a postgraduate degree PG in business analytics from Great Lakes Institute of Management, Chennai. Balaji has expertise relating to statistics, classification, regression, pattern recognition, time series forecasting, and unstructured data analysis using text mining procedures. His main interests are neural networks and deep learning. Balaji holds various certifications in IBM SPSS, IBM Watson, IBM big data architect, cloud architect, CEH, Splunk, Salesforce, Agile CSM, and AWS. If you have any questions, don't hesitate to message him on LinkedIn (balvenkateswaran); he will be more than glad to help fellow data scientists.
Details
Erscheinungsjahr: | 2017 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781788397872 |
ISBN-10: | 1788397878 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Venkateswaran, Balaji
Ciaburro, Giuseppe |
Hersteller: | Packt Publishing |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 235 x 191 x 15 mm |
Von/Mit: | Balaji Venkateswaran (u. a.) |
Erscheinungsdatum: | 27.09.2017 |
Gewicht: | 0,51 kg |
Sicherheitshinweis