Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
48,14 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
This book provides a broad overview of the key results and frameworks for various NSAI tasks as well as discussing important application areas. This book also covers neuro symbolic reasoning frameworks such as LNN, LTN, and NeurASP and learning frameworks. This would include differential inductive logic programming, constraint learning and deep symbolic policy learning. Additionally, application areas such a visual question answering and natural language processing are discussed as well as topics such as verification of neural networks and symbol grounding. Detailed algorithmic descriptions, example logic programs, and an online supplement that includes instructional videos and slides provide thorough but concise coverage of this important area of AI.
Neuro symbolic artificial intelligence (NSAI) encompasses the combination of deep neural networks with symbolic logic for reasoning and learning tasks. NSAI frameworks are now capable of embedding priorknowledge in deep learning architectures, guiding the learning process with logical constraints, providing symbolic explainability, and using gradient-based approaches to learn logical statements. Several approaches are seeing usage in various application areas.
This book is designed for researchers and advanced-level students trying to understand the current landscape of NSAI research as well as those looking to apply NSAI research in areas such as natural language processing and visual question answering. Practitioners who specialize in employing machine learning and AI systems for operational use will find this book useful as well.
Neuro symbolic artificial intelligence (NSAI) encompasses the combination of deep neural networks with symbolic logic for reasoning and learning tasks. NSAI frameworks are now capable of embedding priorknowledge in deep learning architectures, guiding the learning process with logical constraints, providing symbolic explainability, and using gradient-based approaches to learn logical statements. Several approaches are seeing usage in various application areas.
This book is designed for researchers and advanced-level students trying to understand the current landscape of NSAI research as well as those looking to apply NSAI research in areas such as natural language processing and visual question answering. Practitioners who specialize in employing machine learning and AI systems for operational use will find this book useful as well.
This book provides a broad overview of the key results and frameworks for various NSAI tasks as well as discussing important application areas. This book also covers neuro symbolic reasoning frameworks such as LNN, LTN, and NeurASP and learning frameworks. This would include differential inductive logic programming, constraint learning and deep symbolic policy learning. Additionally, application areas such a visual question answering and natural language processing are discussed as well as topics such as verification of neural networks and symbol grounding. Detailed algorithmic descriptions, example logic programs, and an online supplement that includes instructional videos and slides provide thorough but concise coverage of this important area of AI.
Neuro symbolic artificial intelligence (NSAI) encompasses the combination of deep neural networks with symbolic logic for reasoning and learning tasks. NSAI frameworks are now capable of embedding priorknowledge in deep learning architectures, guiding the learning process with logical constraints, providing symbolic explainability, and using gradient-based approaches to learn logical statements. Several approaches are seeing usage in various application areas.
This book is designed for researchers and advanced-level students trying to understand the current landscape of NSAI research as well as those looking to apply NSAI research in areas such as natural language processing and visual question answering. Practitioners who specialize in employing machine learning and AI systems for operational use will find this book useful as well.
Neuro symbolic artificial intelligence (NSAI) encompasses the combination of deep neural networks with symbolic logic for reasoning and learning tasks. NSAI frameworks are now capable of embedding priorknowledge in deep learning architectures, guiding the learning process with logical constraints, providing symbolic explainability, and using gradient-based approaches to learn logical statements. Several approaches are seeing usage in various application areas.
This book is designed for researchers and advanced-level students trying to understand the current landscape of NSAI research as well as those looking to apply NSAI research in areas such as natural language processing and visual question answering. Practitioners who specialize in employing machine learning and AI systems for operational use will find this book useful as well.
Über den Autor
Paulo Shakarian is an associate professor at Arizona State University. His research focuses on symbolic AI and hybrid symbolic-ML systems. He received his Ph.D. from the University of Maryland, College Park. He is a past DARPA Military Fellow, AFOSR Young Investigator recipient, and his work earned multiple "best paper" awards.
Gerardo I. Simari is a professor at UNS, and a researcher at CONICET. His research focuses on AI and Databases, and reasoning under uncertainty. He received a PhD in computer science from University of Maryland College Park and later joined the Department of Computer Science, University of Oxford, where he was also a Fulford Junior Research Fellow of Somerville College.
Chitta Baral is a Professor at the Arizona State University, and a past President of KR Inc. His research interests include Knowledge Representation and Reasoning, NLP and Image Understanding and often involves combining logical reasoning with explicit knowledge and neural learning and reasoning with textual and perceptual inputs.
Bowen Xi is a Ph.D. student at Arizona State University, specializing in the field of Neural Symbolic AI. She is passionate about combining the strengths of neural networks and symbolic reasoning to advance the field of artificial intelligence. Bowen's research interests include developing novel algorithms and techniques that enable machines to learn and reason like humans.
Lahari Pokala is a student pursuing her Master's degree at Arizona State University, where she is majoring in Computer Science. Her interests lie in artificial intelligence and data engineering.
Inhaltsverzeichnis
Chapter1 New Ideas in Neuro Symbolic Reasoning and Learning.- Chapter2 Brief Introduction to Propositional Logic and Predicate Calculus.- Chapter3 Fuzzy and Annotated Logic for Neuro Symbolic Artificial Intelligence.- Chapter4 LTN: Logic Tensor Networks.- Chapter5 Neuro Symbolic Reasoning with Ontological Networks.- Chapter6 LNN: Logical Neural Networks.- Chapter7 NeurASP.- Chapter8 Neuro Symbolic Learning with Differentiable Inductive Logic Programming.- Chapter9 Understanding SATNet: Constraint Learning and Symbol Grounding.- Chapter10 Neuro Symbolic AI for Sequential Decision Making.- Chapter11 Neuro Symbolic Applications.
Details
Erscheinungsjahr: | 2023 |
---|---|
Genre: | Informatik, Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | SpringerBriefs in Computer Science |
Inhalt: |
xii
119 S. 8 s/w Illustr. 10 farbige Illustr. 119 p. 18 illus. 10 illus. in color. |
ISBN-13: | 9783031391781 |
ISBN-10: | 3031391780 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Shakarian, Paulo
Baral, Chitta Pokala, Lahari Xi, Bowen Simari, Gerardo I. |
Auflage: | 1st ed. 2023 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing AG SpringerBriefs in Computer Science |
Maße: | 235 x 155 x 8 mm |
Von/Mit: | Paulo Shakarian (u. a.) |
Erscheinungsdatum: | 14.09.2023 |
Gewicht: | 0,213 kg |
Über den Autor
Paulo Shakarian is an associate professor at Arizona State University. His research focuses on symbolic AI and hybrid symbolic-ML systems. He received his Ph.D. from the University of Maryland, College Park. He is a past DARPA Military Fellow, AFOSR Young Investigator recipient, and his work earned multiple "best paper" awards.
Gerardo I. Simari is a professor at UNS, and a researcher at CONICET. His research focuses on AI and Databases, and reasoning under uncertainty. He received a PhD in computer science from University of Maryland College Park and later joined the Department of Computer Science, University of Oxford, where he was also a Fulford Junior Research Fellow of Somerville College.
Chitta Baral is a Professor at the Arizona State University, and a past President of KR Inc. His research interests include Knowledge Representation and Reasoning, NLP and Image Understanding and often involves combining logical reasoning with explicit knowledge and neural learning and reasoning with textual and perceptual inputs.
Bowen Xi is a Ph.D. student at Arizona State University, specializing in the field of Neural Symbolic AI. She is passionate about combining the strengths of neural networks and symbolic reasoning to advance the field of artificial intelligence. Bowen's research interests include developing novel algorithms and techniques that enable machines to learn and reason like humans.
Lahari Pokala is a student pursuing her Master's degree at Arizona State University, where she is majoring in Computer Science. Her interests lie in artificial intelligence and data engineering.
Inhaltsverzeichnis
Chapter1 New Ideas in Neuro Symbolic Reasoning and Learning.- Chapter2 Brief Introduction to Propositional Logic and Predicate Calculus.- Chapter3 Fuzzy and Annotated Logic for Neuro Symbolic Artificial Intelligence.- Chapter4 LTN: Logic Tensor Networks.- Chapter5 Neuro Symbolic Reasoning with Ontological Networks.- Chapter6 LNN: Logical Neural Networks.- Chapter7 NeurASP.- Chapter8 Neuro Symbolic Learning with Differentiable Inductive Logic Programming.- Chapter9 Understanding SATNet: Constraint Learning and Symbol Grounding.- Chapter10 Neuro Symbolic AI for Sequential Decision Making.- Chapter11 Neuro Symbolic Applications.
Details
Erscheinungsjahr: | 2023 |
---|---|
Genre: | Informatik, Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | SpringerBriefs in Computer Science |
Inhalt: |
xii
119 S. 8 s/w Illustr. 10 farbige Illustr. 119 p. 18 illus. 10 illus. in color. |
ISBN-13: | 9783031391781 |
ISBN-10: | 3031391780 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Shakarian, Paulo
Baral, Chitta Pokala, Lahari Xi, Bowen Simari, Gerardo I. |
Auflage: | 1st ed. 2023 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing AG SpringerBriefs in Computer Science |
Maße: | 235 x 155 x 8 mm |
Von/Mit: | Paulo Shakarian (u. a.) |
Erscheinungsdatum: | 14.09.2023 |
Gewicht: | 0,213 kg |
Warnhinweis