Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
59,99 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Kategorien:
Beschreibung
NEURONALE NETZE MIT C# PROGRAMMIEREN //
- Aufbau und Training von neuronalen Netzen
- Wichtige Machine-Learning-Algorithmen verstehen und einsetzen
- Arbeiten mit [...] und [...]
- Vorstellung des Open Source Framework [...]
- Erstellen eines Lex-Chatbot für .NET
- Alle Beispiele sind mit Visual Studio und C# umsetzbar
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Sie wollen neuronale Netze und Machine-Learning-Algorithmen mit C# entwickeln? Dann finden Sie in diesem Buch eine gut verständliche Einführung in die Grundlagen und es wird Ihnen gezeigt, wie Sie neuronale Netze und Machine-Learning-Algorithmen in Ihren eigenen Projekten praktisch einsetzen.
Mithilfe von Beispielen erstellen und trainieren Sie Ihr erstes neuronales Netz zur vorausschauenden Wartung einer Produktionsmaschine.
Im Praxisteil lernen Sie dann, wie Sie TensorFlow-Modelle in [...] benutzen oder [...] direkt verwenden können. Des Weiteren nutzen Sie die Predictive- und Sentiment-Analyse, um sich mit Machine-Learning-Algorithmen vertraut zu machen.
Alle im Buch vorgestellten Projekte sind in C# programmiert und stehen als Download zur Verfügung. Grundkenntnisse in C# werden für die Arbeit mit dem Buch vorausgesetzt. Alle Projekte lassen sich ohne größere Rechnerressourcen umsetzen.
AUS DEM INHALT //
Künstliche Intelligenz: Grundlagen/Konzepte und Methoden von Machine Learning/Neuronale Netze bauen und trainieren/Maschinensimulation mit
Multilayer Perceptron ( MLP )/Backpropagation/Recurrent Neural Networks/Convolutional Neural Networks/Machine Learning as a Service/Predictive Analytics/Objekterkennung/Sentiment-Analyse
Daniel Basler arbeitet als Lead Developer und Softwarearchitekt. Seine Schwerpunkte liegen auf Cross-Platform-Apps, Android, JavaScript und Microsoft-Technologien. Er entwickelt u.a. Software für Regal- und Flächenlagersysteme sowie Anlagenvisualisierung und setzt in diesem Umfeld verstärkt Machine-Learning-Methoden ein. Darüber hinaus schreibt er regelmäßig Artikel für die Fachzeitschriften dotnetpro und web&mobile Developer.
- Aufbau und Training von neuronalen Netzen
- Wichtige Machine-Learning-Algorithmen verstehen und einsetzen
- Arbeiten mit [...] und [...]
- Vorstellung des Open Source Framework [...]
- Erstellen eines Lex-Chatbot für .NET
- Alle Beispiele sind mit Visual Studio und C# umsetzbar
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Sie wollen neuronale Netze und Machine-Learning-Algorithmen mit C# entwickeln? Dann finden Sie in diesem Buch eine gut verständliche Einführung in die Grundlagen und es wird Ihnen gezeigt, wie Sie neuronale Netze und Machine-Learning-Algorithmen in Ihren eigenen Projekten praktisch einsetzen.
Mithilfe von Beispielen erstellen und trainieren Sie Ihr erstes neuronales Netz zur vorausschauenden Wartung einer Produktionsmaschine.
Im Praxisteil lernen Sie dann, wie Sie TensorFlow-Modelle in [...] benutzen oder [...] direkt verwenden können. Des Weiteren nutzen Sie die Predictive- und Sentiment-Analyse, um sich mit Machine-Learning-Algorithmen vertraut zu machen.
Alle im Buch vorgestellten Projekte sind in C# programmiert und stehen als Download zur Verfügung. Grundkenntnisse in C# werden für die Arbeit mit dem Buch vorausgesetzt. Alle Projekte lassen sich ohne größere Rechnerressourcen umsetzen.
AUS DEM INHALT //
Künstliche Intelligenz: Grundlagen/Konzepte und Methoden von Machine Learning/Neuronale Netze bauen und trainieren/Maschinensimulation mit
Multilayer Perceptron ( MLP )/Backpropagation/Recurrent Neural Networks/Convolutional Neural Networks/Machine Learning as a Service/Predictive Analytics/Objekterkennung/Sentiment-Analyse
Daniel Basler arbeitet als Lead Developer und Softwarearchitekt. Seine Schwerpunkte liegen auf Cross-Platform-Apps, Android, JavaScript und Microsoft-Technologien. Er entwickelt u.a. Software für Regal- und Flächenlagersysteme sowie Anlagenvisualisierung und setzt in diesem Umfeld verstärkt Machine-Learning-Methoden ein. Darüber hinaus schreibt er regelmäßig Artikel für die Fachzeitschriften dotnetpro und web&mobile Developer.
NEURONALE NETZE MIT C# PROGRAMMIEREN //
- Aufbau und Training von neuronalen Netzen
- Wichtige Machine-Learning-Algorithmen verstehen und einsetzen
- Arbeiten mit [...] und [...]
- Vorstellung des Open Source Framework [...]
- Erstellen eines Lex-Chatbot für .NET
- Alle Beispiele sind mit Visual Studio und C# umsetzbar
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Sie wollen neuronale Netze und Machine-Learning-Algorithmen mit C# entwickeln? Dann finden Sie in diesem Buch eine gut verständliche Einführung in die Grundlagen und es wird Ihnen gezeigt, wie Sie neuronale Netze und Machine-Learning-Algorithmen in Ihren eigenen Projekten praktisch einsetzen.
Mithilfe von Beispielen erstellen und trainieren Sie Ihr erstes neuronales Netz zur vorausschauenden Wartung einer Produktionsmaschine.
Im Praxisteil lernen Sie dann, wie Sie TensorFlow-Modelle in [...] benutzen oder [...] direkt verwenden können. Des Weiteren nutzen Sie die Predictive- und Sentiment-Analyse, um sich mit Machine-Learning-Algorithmen vertraut zu machen.
Alle im Buch vorgestellten Projekte sind in C# programmiert und stehen als Download zur Verfügung. Grundkenntnisse in C# werden für die Arbeit mit dem Buch vorausgesetzt. Alle Projekte lassen sich ohne größere Rechnerressourcen umsetzen.
AUS DEM INHALT //
Künstliche Intelligenz: Grundlagen/Konzepte und Methoden von Machine Learning/Neuronale Netze bauen und trainieren/Maschinensimulation mit
Multilayer Perceptron ( MLP )/Backpropagation/Recurrent Neural Networks/Convolutional Neural Networks/Machine Learning as a Service/Predictive Analytics/Objekterkennung/Sentiment-Analyse
Daniel Basler arbeitet als Lead Developer und Softwarearchitekt. Seine Schwerpunkte liegen auf Cross-Platform-Apps, Android, JavaScript und Microsoft-Technologien. Er entwickelt u.a. Software für Regal- und Flächenlagersysteme sowie Anlagenvisualisierung und setzt in diesem Umfeld verstärkt Machine-Learning-Methoden ein. Darüber hinaus schreibt er regelmäßig Artikel für die Fachzeitschriften dotnetpro und web&mobile Developer.
- Aufbau und Training von neuronalen Netzen
- Wichtige Machine-Learning-Algorithmen verstehen und einsetzen
- Arbeiten mit [...] und [...]
- Vorstellung des Open Source Framework [...]
- Erstellen eines Lex-Chatbot für .NET
- Alle Beispiele sind mit Visual Studio und C# umsetzbar
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Sie wollen neuronale Netze und Machine-Learning-Algorithmen mit C# entwickeln? Dann finden Sie in diesem Buch eine gut verständliche Einführung in die Grundlagen und es wird Ihnen gezeigt, wie Sie neuronale Netze und Machine-Learning-Algorithmen in Ihren eigenen Projekten praktisch einsetzen.
Mithilfe von Beispielen erstellen und trainieren Sie Ihr erstes neuronales Netz zur vorausschauenden Wartung einer Produktionsmaschine.
Im Praxisteil lernen Sie dann, wie Sie TensorFlow-Modelle in [...] benutzen oder [...] direkt verwenden können. Des Weiteren nutzen Sie die Predictive- und Sentiment-Analyse, um sich mit Machine-Learning-Algorithmen vertraut zu machen.
Alle im Buch vorgestellten Projekte sind in C# programmiert und stehen als Download zur Verfügung. Grundkenntnisse in C# werden für die Arbeit mit dem Buch vorausgesetzt. Alle Projekte lassen sich ohne größere Rechnerressourcen umsetzen.
AUS DEM INHALT //
Künstliche Intelligenz: Grundlagen/Konzepte und Methoden von Machine Learning/Neuronale Netze bauen und trainieren/Maschinensimulation mit
Multilayer Perceptron ( MLP )/Backpropagation/Recurrent Neural Networks/Convolutional Neural Networks/Machine Learning as a Service/Predictive Analytics/Objekterkennung/Sentiment-Analyse
Daniel Basler arbeitet als Lead Developer und Softwarearchitekt. Seine Schwerpunkte liegen auf Cross-Platform-Apps, Android, JavaScript und Microsoft-Technologien. Er entwickelt u.a. Software für Regal- und Flächenlagersysteme sowie Anlagenvisualisierung und setzt in diesem Umfeld verstärkt Machine-Learning-Methoden ein. Darüber hinaus schreibt er regelmäßig Artikel für die Fachzeitschriften dotnetpro und web&mobile Developer.
Über den Autor
Daniel Basler arbeitet als Lead Developer und Softwarearchitekt. Seine Schwerpunkte liegen auf Cross-Platform-Apps, Android, JavaScript und Microsoft-Technologien. Er entwickelt u.a. Software für die Bereiche Lagersteuerung (Regal- und Flächenlagersysteme) und Anlagenvisualisierung und setzt in diesem Umfeld verstärkt Machine Learning-Methoden ein. Darüber hinaus schreibt er regelmäßig Artikel für die Fachzeitschriften dotnetpro und web&mobile Developer.
Details
Erscheinungsjahr: | 2021 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Bundle |
Inhalt: |
1 Buch
1 MP3, Download oder Online |
ISBN-13: | 9783446462298 |
ISBN-10: | 3446462295 |
Sprache: | Deutsch |
Herstellernummer: | 553/46229 |
Einband: | Gebunden |
Autor: | Basler, Daniel |
Hersteller: |
Hanser Fachbuchverlag
Hanser, Carl, Verlag GmbH & Co. KG |
Maße: | 244 x 179 x 27 mm |
Von/Mit: | Daniel Basler |
Erscheinungsdatum: | 09.04.2021 |
Gewicht: | 0,805 kg |
Über den Autor
Daniel Basler arbeitet als Lead Developer und Softwarearchitekt. Seine Schwerpunkte liegen auf Cross-Platform-Apps, Android, JavaScript und Microsoft-Technologien. Er entwickelt u.a. Software für die Bereiche Lagersteuerung (Regal- und Flächenlagersysteme) und Anlagenvisualisierung und setzt in diesem Umfeld verstärkt Machine Learning-Methoden ein. Darüber hinaus schreibt er regelmäßig Artikel für die Fachzeitschriften dotnetpro und web&mobile Developer.
Details
Erscheinungsjahr: | 2021 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Bundle |
Inhalt: |
1 Buch
1 MP3, Download oder Online |
ISBN-13: | 9783446462298 |
ISBN-10: | 3446462295 |
Sprache: | Deutsch |
Herstellernummer: | 553/46229 |
Einband: | Gebunden |
Autor: | Basler, Daniel |
Hersteller: |
Hanser Fachbuchverlag
Hanser, Carl, Verlag GmbH & Co. KG |
Maße: | 244 x 179 x 27 mm |
Von/Mit: | Daniel Basler |
Erscheinungsdatum: | 09.04.2021 |
Gewicht: | 0,805 kg |
Warnhinweis