Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Numerical Methods for Stochastic Partial Differential Equations with White Noise
Buch von George Em Karniadakis (u. a.)
Sprache: Englisch

139,09 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations.
This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is [...] Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included.

In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations.
This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is [...] Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included.

In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
Zusammenfassung
Includes both theoretical and computational exercises, allowing for use with mixed-level classes
Provides Matlab codes for examples
The first book to emphasizes the Wong-Zakai approximation
Offers an approach to stochastic modeling other than the common Monte Carlo methods
Inhaltsverzeichnis
Preface.- Prologue.- Brownian Motion and Stochastic Calculus.- Numerical Methods for Stochastic Differential Equations.- Part I Stochastic Ordinary Differential Equations.- Numerical Schemes for SDEs with Time Delay Using the Wong-Zakai Approximation.- Balanced Numerical Schemes for SDEs with non-Lipschitz Coefficients.- Part II Temporal White Noise.- Wiener Chaos Methods for Linear Stochastic Advection-Diffusion-Reaction Equations.- Stochastic Collocation Methods for Differential Equations with White Noise.- Comparison Between Wiener Chaos Methods and Stochastic Collocation Methods.- Application of Collocation Method to Stochastic Conservation Laws.- Part III Spatial White Noise.- Semilinear Elliptic Equations with Additive Noise.- Multiplicative White Noise: The Wick-Malliavin Approximation.- Epilogue.- Appendices.- A. Basics of Probability.- B. Semi-analytical Methods for SPDEs.- C. Gauss Quadrature.- D. Some Useful Inequalities and Lemmas.- E. Computation of Convergence Rate.
Details
Erscheinungsjahr: 2017
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Applied Mathematical Sciences
Inhalt: xv
394 S.
2 s/w Illustr.
34 farbige Illustr.
394 p. 36 illus.
34 illus. in color. With online files/update.
ISBN-13: 9783319575100
ISBN-10: 3319575104
Sprache: Englisch
Herstellernummer: 978-3-319-57510-0
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Karniadakis, George Em
Zhang, Zhongqiang
Auflage: 1st ed. 2017
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Applied Mathematical Sciences
Maße: 241 x 160 x 28 mm
Von/Mit: George Em Karniadakis (u. a.)
Erscheinungsdatum: 12.09.2017
Gewicht: 0,781 kg
Artikel-ID: 109743442
Zusammenfassung
Includes both theoretical and computational exercises, allowing for use with mixed-level classes
Provides Matlab codes for examples
The first book to emphasizes the Wong-Zakai approximation
Offers an approach to stochastic modeling other than the common Monte Carlo methods
Inhaltsverzeichnis
Preface.- Prologue.- Brownian Motion and Stochastic Calculus.- Numerical Methods for Stochastic Differential Equations.- Part I Stochastic Ordinary Differential Equations.- Numerical Schemes for SDEs with Time Delay Using the Wong-Zakai Approximation.- Balanced Numerical Schemes for SDEs with non-Lipschitz Coefficients.- Part II Temporal White Noise.- Wiener Chaos Methods for Linear Stochastic Advection-Diffusion-Reaction Equations.- Stochastic Collocation Methods for Differential Equations with White Noise.- Comparison Between Wiener Chaos Methods and Stochastic Collocation Methods.- Application of Collocation Method to Stochastic Conservation Laws.- Part III Spatial White Noise.- Semilinear Elliptic Equations with Additive Noise.- Multiplicative White Noise: The Wick-Malliavin Approximation.- Epilogue.- Appendices.- A. Basics of Probability.- B. Semi-analytical Methods for SPDEs.- C. Gauss Quadrature.- D. Some Useful Inequalities and Lemmas.- E. Computation of Convergence Rate.
Details
Erscheinungsjahr: 2017
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Applied Mathematical Sciences
Inhalt: xv
394 S.
2 s/w Illustr.
34 farbige Illustr.
394 p. 36 illus.
34 illus. in color. With online files/update.
ISBN-13: 9783319575100
ISBN-10: 3319575104
Sprache: Englisch
Herstellernummer: 978-3-319-57510-0
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Karniadakis, George Em
Zhang, Zhongqiang
Auflage: 1st ed. 2017
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Applied Mathematical Sciences
Maße: 241 x 160 x 28 mm
Von/Mit: George Em Karniadakis (u. a.)
Erscheinungsdatum: 12.09.2017
Gewicht: 0,781 kg
Artikel-ID: 109743442
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte