Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
34,99 €*
Versandkostenfrei per Post / DHL
Lieferzeit 4-7 Werktage
Kategorien:
Beschreibung
Konvexe Optimierungsprobleme mit einer nichtglatten Zielfunktion treten in vielen Anwendungen auf, beispielsweise im Zusammenhang mit Penalty-Verfahren für differenzierbare Optimierungsprobleme, mit der Lagrange-Relaxation bei kombinatorischen Optimierungsproblemen oder bei der Strukturoptimierung von Stabwerken. Die wichtigsten numerischen Verfahren zur Lösung solcher Optimierungsprobleme sind Subgradienten- und Bundle-Verfahren. Das Buch gibt eine kompakte Einführung in die Grundlagen dieser Verfahren, die den Leser in die Lage versetzt, einfache Versionen der Verfahren selbst zu implementieren.
Konvexe Optimierungsprobleme mit einer nichtglatten Zielfunktion treten in vielen Anwendungen auf, beispielsweise im Zusammenhang mit Penalty-Verfahren für differenzierbare Optimierungsprobleme, mit der Lagrange-Relaxation bei kombinatorischen Optimierungsproblemen oder bei der Strukturoptimierung von Stabwerken. Die wichtigsten numerischen Verfahren zur Lösung solcher Optimierungsprobleme sind Subgradienten- und Bundle-Verfahren. Das Buch gibt eine kompakte Einführung in die Grundlagen dieser Verfahren, die den Leser in die Lage versetzt, einfache Versionen der Verfahren selbst zu implementieren.
Über den Autor
Prof. Dr. Walter Alt, Universität Jena
Zusammenfassung
Konvexe Optimierungsprobleme mit einer nichtglatten Zielfunktion treten in vielen Anwendungen auf, beispielsweise im Zusammenhang mit Penalty-Verfahren für differenzierbare Optimierungsprobleme, mit der Lagrange-Relaxation bei kombinatorischen Optimierungsproblemen oder bei der Strukturoptimierung von Stabwerken. Die wichtigsten numerischen Verfahren zur Lösung solcher Optimierungsprobleme sind Subgradienten- und Bundle-Verfahren. Das Buch gibt eine kompakte Einführung in die Grundlagen dieser Verfahren, die den Leser in die Lage versetzt, einfache Versionen der Verfahren selbst zu implementieren.
Inhaltsverzeichnis
1 Einführung.- 1.1 Konvexe Mengen und Funktionen.- 1.2 Konvexe Optimierungsaufgaben.- 1.3 Warum spezielle Verfahren?.- 2 Konvexe Mengen und Funktionen.- 2.1 Konvexe Mengen.- 2.2 Projektion auf konvexe Mengen.- 2.3 Trennungssätze.- 2.4 Konvexe Funktionen.- 2.5 Operationen mit konvexen Funktionen.- 2.6 Affine Minoranten.- 2.7 Lokale Lipschitz-Stetigkeit.- 2.8 Subdifferential und Richtungsableitung.- 2.9 Maximumfunktionen.- 3 Konvexe Optimierungsprobleme.- 3.1 Unrestringierte Probleme.- 3.2 Abstiegsrichtungen.- 3.3 Probleme mit allgemeinen konvexen Restriktionen.- 3.4 Lineare Nebenbedingungen.- 4 Das Subgradientenverfahren.- 4.1 Das Verfahren.- 4.2 Konvergenzbetrachtungen.- 4.3 Numerische Beispiele.- 5 Approximative Ableitungen.- 5.1 Approximation des Subdifferentials.- 5.2 Approximation der Richtungsableitung.- 5.3 Approximative Minima.- 5.4 Approximative Abstiegsrichtungen.- 6 Approximative Abstiegsverfahren.- 6.1 Grundlegende Verfahrenskonzepte.- 6.2 Das Schrittweitenverfahren.- 6.3 Konstruktion des Bundles.- 6.4 Ein implementierbares Abstiegsverfahren.- 7 Bundle-Verfahren.- 7.1 Stopp-Kriterien.- 7.2 Allgemeiner Verfahrensablauf.- 7.3 Numerische Beispiele.- 8 Bundle-Trust-Region-Verfahren.- 8.1 Grundlage des Verfahrens.- 8.2 Das Trust-Region-Problem.- 8.3 Das Verfahrenskonzept.- 8.4 Implementierung des Verfahrens.- 8.5 Das Bundle-Trust-Region-Verfahren.- 8.6 Konvergenz des Verfahrens.- 8.7 Numerische Beispiele.- 8.8 Probleme mit linearen Restriktionen.- Übungsaufgaben.
Details
Erscheinungsjahr: | 2004 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
176 S.
5 s/w Illustr. 176 S. 5 Abb. |
ISBN-13: | 9783519005131 |
ISBN-10: | 3519005131 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Alt, Walter |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag |
Maße: | 240 x 170 x 11 mm |
Von/Mit: | Walter Alt |
Erscheinungsdatum: | 28.10.2004 |
Gewicht: | 0,317 kg |
Über den Autor
Prof. Dr. Walter Alt, Universität Jena
Zusammenfassung
Konvexe Optimierungsprobleme mit einer nichtglatten Zielfunktion treten in vielen Anwendungen auf, beispielsweise im Zusammenhang mit Penalty-Verfahren für differenzierbare Optimierungsprobleme, mit der Lagrange-Relaxation bei kombinatorischen Optimierungsproblemen oder bei der Strukturoptimierung von Stabwerken. Die wichtigsten numerischen Verfahren zur Lösung solcher Optimierungsprobleme sind Subgradienten- und Bundle-Verfahren. Das Buch gibt eine kompakte Einführung in die Grundlagen dieser Verfahren, die den Leser in die Lage versetzt, einfache Versionen der Verfahren selbst zu implementieren.
Inhaltsverzeichnis
1 Einführung.- 1.1 Konvexe Mengen und Funktionen.- 1.2 Konvexe Optimierungsaufgaben.- 1.3 Warum spezielle Verfahren?.- 2 Konvexe Mengen und Funktionen.- 2.1 Konvexe Mengen.- 2.2 Projektion auf konvexe Mengen.- 2.3 Trennungssätze.- 2.4 Konvexe Funktionen.- 2.5 Operationen mit konvexen Funktionen.- 2.6 Affine Minoranten.- 2.7 Lokale Lipschitz-Stetigkeit.- 2.8 Subdifferential und Richtungsableitung.- 2.9 Maximumfunktionen.- 3 Konvexe Optimierungsprobleme.- 3.1 Unrestringierte Probleme.- 3.2 Abstiegsrichtungen.- 3.3 Probleme mit allgemeinen konvexen Restriktionen.- 3.4 Lineare Nebenbedingungen.- 4 Das Subgradientenverfahren.- 4.1 Das Verfahren.- 4.2 Konvergenzbetrachtungen.- 4.3 Numerische Beispiele.- 5 Approximative Ableitungen.- 5.1 Approximation des Subdifferentials.- 5.2 Approximation der Richtungsableitung.- 5.3 Approximative Minima.- 5.4 Approximative Abstiegsrichtungen.- 6 Approximative Abstiegsverfahren.- 6.1 Grundlegende Verfahrenskonzepte.- 6.2 Das Schrittweitenverfahren.- 6.3 Konstruktion des Bundles.- 6.4 Ein implementierbares Abstiegsverfahren.- 7 Bundle-Verfahren.- 7.1 Stopp-Kriterien.- 7.2 Allgemeiner Verfahrensablauf.- 7.3 Numerische Beispiele.- 8 Bundle-Trust-Region-Verfahren.- 8.1 Grundlage des Verfahrens.- 8.2 Das Trust-Region-Problem.- 8.3 Das Verfahrenskonzept.- 8.4 Implementierung des Verfahrens.- 8.5 Das Bundle-Trust-Region-Verfahren.- 8.6 Konvergenz des Verfahrens.- 8.7 Numerische Beispiele.- 8.8 Probleme mit linearen Restriktionen.- Übungsaufgaben.
Details
Erscheinungsjahr: | 2004 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
176 S.
5 s/w Illustr. 176 S. 5 Abb. |
ISBN-13: | 9783519005131 |
ISBN-10: | 3519005131 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Alt, Walter |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag |
Maße: | 240 x 170 x 11 mm |
Von/Mit: | Walter Alt |
Erscheinungsdatum: | 28.10.2004 |
Gewicht: | 0,317 kg |
Warnhinweis