Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
On Quaternions and Octonions
Buch von Derek A. Smith (u. a.)
Sprache: Englisch

147,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung

This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The authors also describe the arithmetics of the quaternions and octonions. The book concludes with a new theory of octonion factorization.

This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The authors also describe the arithmetics of the quaternions and octonions. The book concludes with a new theory of octonion factorization.

Über den Autor
John H. Conway, Derek A. Smith
Inhaltsverzeichnis
Preface, I The Complex Numbers, 1 Introduction, 1.1 The Algebra ¿ of Real Numbers, 1.2 Higher Dimensions, 1.3 The Orthogonal Groups, 1.4 The History of Quaternions and Octonions, 2 Complex Numbers and 2-Dimensional Geometry, 2.1 Rotations and Reflections, 2.2 Finite Subgroups of GO2 and SO2, 2.3 The Gaussian Integers, 2.4 The Kleinian Integers, 2.5 The 2-Dimensional Space Groups, II The Quaternions, 3 Quaternions and 3-Dimensional Groups, 3.1 The Quaternions and 3-Dimensional Rotations, 3.2 Some Spherical Geometry, 3.3 The Enumeration of Rotation Groups, 3.4 Discussion of the Groups, 3.5 The Finite Groups of Quaternions, 3.6 Chiral and Achiral,Diploid and Haploid, 3.7 The Projective or Elliptic Groups, 3.8 The Projective Groups Tell Us All, 3.9 Geometric Description of the Groups, Appendix: v ¿ v¿qv Is a Simple Rotation, 4 Quaternions and 4-Dimensional Groups, 4.1 Introduction, 4.2 Two 2-to-1Maps, 4.3 Naming the Groups, 4.4 Coxeter's Notations for the Polyhedral Groups, 4.5 Previous Enumerations, 4.6 A Note on Chirality, Appendix: Completeness of the Tables, 5 The Hurwitz Integral Quaternions, 5.1 The Hurwitz Integral Quaternions, 5.2 Primes and Unit, 5.3 Quaternionic Factorization of Ordinary Primes, 5.4 The Metacommutation Problem, 5.5 Factoring the Lipschitz Integers, III The Octonions, 6 The Composition Algebras, 6.1 TheMultiplication Laws, 6.2 The Conjugation Laws, 6.3 The Doubling Laws, 6.4 Completing Hurwitz's Theorem, 6.5 Other Properties of the Algebras, 6.6 The Maps Lx,Rx,and Bx, 6.7 Coordinates for the Quaternions and Octonions, 6.8 Symmetries of the Octonions: Diassociativity, 6.9 The Algebras over Other Fields, 6.10 The 1-,2-,4-,and 8-Square Identities, 6.11 Higher Square Identities: Pfister Theory, Appendix: What Fixes a Quaternion Subalgebra?, 7 Moufang Loops, 7.1 Inverse Loops, 7.2 Isotopies, 7.3 Monotopies and Their Companions, 7.4 Different Forms of the Moufang Laws, 8 Octonions and 8-Dimensional Geometry, 8.1 Isotopies and SO8, 8.2 Orthogonal Isotopies and the Spin Group, 8.3 Triality, 8.4 Seven Rights Can Make a Left, 8.5 Other Multiplication Theorems, 8.6 Three 7-Dimensional Groups in an 8-Dimensional One, 8.7 On Companions, 9 The Octavian Integers O, 9.1 Defining Integrality, 9.2 Toward the Octavian Integers, 9.3 The E8 Lattice of Korkine,Zolotarev,and Gosset, 9.4 Division with Remainder,and Ideals, 9.5 Factorization in O8, 9.6 The Number of Prime Factorizations, 9.7 "Meta-Problems" for Octavian Factorization, 10 Automorphisms and Subrings of O, 10.1 The 240Octavian Units, 10.2 Two Kinds of Orthogonality, 10.3 The Automorphism Group of O, 10.4 The Octavian Unit Rings, 10.5 Stabilizing the Unit Subrings, Appendix: Proof of Theorem5, 11 Reading O Mod 2, 11.1 Why Read Mod 2?, 11.2 The E8 Lattice,Mod 2, 11.3 What Fixes (¿)?, 11.4 The Remaining Subrings Modulo 2, 12 The Octonion Projective Plane OP2, 12.1 The Exceptional Lie Groups and Freudenthal's "Magic Square", 12.2 The Octonion Projective Plane, 12.3 Coordinates for OP2, Bibliography, Index
Details
Erscheinungsjahr: 2003
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9781568811345
ISBN-10: 1568811349
Sprache: Englisch
Einband: Gebunden
Autor: Smith, Derek A.
Conway, John H.
Hersteller: Taylor & Francis Inc
Maße: 239 x 159 x 17 mm
Von/Mit: Derek A. Smith (u. a.)
Erscheinungsdatum: 23.01.2003
Gewicht: 0,357 kg
Artikel-ID: 102179829
Über den Autor
John H. Conway, Derek A. Smith
Inhaltsverzeichnis
Preface, I The Complex Numbers, 1 Introduction, 1.1 The Algebra ¿ of Real Numbers, 1.2 Higher Dimensions, 1.3 The Orthogonal Groups, 1.4 The History of Quaternions and Octonions, 2 Complex Numbers and 2-Dimensional Geometry, 2.1 Rotations and Reflections, 2.2 Finite Subgroups of GO2 and SO2, 2.3 The Gaussian Integers, 2.4 The Kleinian Integers, 2.5 The 2-Dimensional Space Groups, II The Quaternions, 3 Quaternions and 3-Dimensional Groups, 3.1 The Quaternions and 3-Dimensional Rotations, 3.2 Some Spherical Geometry, 3.3 The Enumeration of Rotation Groups, 3.4 Discussion of the Groups, 3.5 The Finite Groups of Quaternions, 3.6 Chiral and Achiral,Diploid and Haploid, 3.7 The Projective or Elliptic Groups, 3.8 The Projective Groups Tell Us All, 3.9 Geometric Description of the Groups, Appendix: v ¿ v¿qv Is a Simple Rotation, 4 Quaternions and 4-Dimensional Groups, 4.1 Introduction, 4.2 Two 2-to-1Maps, 4.3 Naming the Groups, 4.4 Coxeter's Notations for the Polyhedral Groups, 4.5 Previous Enumerations, 4.6 A Note on Chirality, Appendix: Completeness of the Tables, 5 The Hurwitz Integral Quaternions, 5.1 The Hurwitz Integral Quaternions, 5.2 Primes and Unit, 5.3 Quaternionic Factorization of Ordinary Primes, 5.4 The Metacommutation Problem, 5.5 Factoring the Lipschitz Integers, III The Octonions, 6 The Composition Algebras, 6.1 TheMultiplication Laws, 6.2 The Conjugation Laws, 6.3 The Doubling Laws, 6.4 Completing Hurwitz's Theorem, 6.5 Other Properties of the Algebras, 6.6 The Maps Lx,Rx,and Bx, 6.7 Coordinates for the Quaternions and Octonions, 6.8 Symmetries of the Octonions: Diassociativity, 6.9 The Algebras over Other Fields, 6.10 The 1-,2-,4-,and 8-Square Identities, 6.11 Higher Square Identities: Pfister Theory, Appendix: What Fixes a Quaternion Subalgebra?, 7 Moufang Loops, 7.1 Inverse Loops, 7.2 Isotopies, 7.3 Monotopies and Their Companions, 7.4 Different Forms of the Moufang Laws, 8 Octonions and 8-Dimensional Geometry, 8.1 Isotopies and SO8, 8.2 Orthogonal Isotopies and the Spin Group, 8.3 Triality, 8.4 Seven Rights Can Make a Left, 8.5 Other Multiplication Theorems, 8.6 Three 7-Dimensional Groups in an 8-Dimensional One, 8.7 On Companions, 9 The Octavian Integers O, 9.1 Defining Integrality, 9.2 Toward the Octavian Integers, 9.3 The E8 Lattice of Korkine,Zolotarev,and Gosset, 9.4 Division with Remainder,and Ideals, 9.5 Factorization in O8, 9.6 The Number of Prime Factorizations, 9.7 "Meta-Problems" for Octavian Factorization, 10 Automorphisms and Subrings of O, 10.1 The 240Octavian Units, 10.2 Two Kinds of Orthogonality, 10.3 The Automorphism Group of O, 10.4 The Octavian Unit Rings, 10.5 Stabilizing the Unit Subrings, Appendix: Proof of Theorem5, 11 Reading O Mod 2, 11.1 Why Read Mod 2?, 11.2 The E8 Lattice,Mod 2, 11.3 What Fixes (¿)?, 11.4 The Remaining Subrings Modulo 2, 12 The Octonion Projective Plane OP2, 12.1 The Exceptional Lie Groups and Freudenthal's "Magic Square", 12.2 The Octonion Projective Plane, 12.3 Coordinates for OP2, Bibliography, Index
Details
Erscheinungsjahr: 2003
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9781568811345
ISBN-10: 1568811349
Sprache: Englisch
Einband: Gebunden
Autor: Smith, Derek A.
Conway, John H.
Hersteller: Taylor & Francis Inc
Maße: 239 x 159 x 17 mm
Von/Mit: Derek A. Smith (u. a.)
Erscheinungsdatum: 23.01.2003
Gewicht: 0,357 kg
Artikel-ID: 102179829
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte